Skip to main content
Log in

Metabolic monitoring by bacterial mRNAs

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

There is growing appreciation for diversity in the strategies that bacteria utilize in regulating gene expression. Bacteria must be able to respond in different ways to different stresses and thus require unique regulatory solutions for the physiological challenges they encounter. Recent data indicate that bacteria commonly employ a variety of posttranscriptional regulatory mechanisms to coordinate expression of their genes. In many instances, RNA structures embedded at the 5′ ends of mRNAs are utilized to sense particular metabolic cues and regulate the encoded genes. These RNA elements are likely to range in structural sophistication, from short sequences recognized by RNA-binding proteins to complex shapes that fold into high-affinity receptors for small organic molecules. Enough examples of RNA-mediated genetic strategies have been found that it is becoming useful to view this overall mode of regulatory control at a genomic level. Eventually, a complete picture of bacterial gene regulation within a single bacterium, from control at transcription initiation to control of mRNA stability, will emerge. But for now, this article seeks to provide a brief overview of the known categories of RNA-mediated genetic mechanisms within the bacterium Bacillus subtilis, with the expectation that it is representative of bacteria as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alen C, Sonenshein AL (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci USA 96:10412–10417

    Google Scholar 

  • Antson AA, Otridge J, Brzozowski AM, Dodson EJ, Dodson GG, Wilson KS, Smith TM, Yang M, Kurecki T, Gollnick P (1995) The structure of trp RNA-binding attenuation protein. Nature 374:693–700

    Google Scholar 

  • Antson AA, Dodson EJ, Dodson G, Greaves RB, Chen X, Gollnick P (1999) Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401:235–242

    Google Scholar 

  • Asayama M, Saito K, Kobayashi Y (1998) Translational attenuation of the Bacillus subtilis spo0B cistron by an RNA structure encompassing the initiation region. Nucleic Acids Res 26:824–830

    Google Scholar 

  • Babitzke P (2004) Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein: the Bacillus subtilis TRAP protein. Curr Opin Microbiol 7:312–139

    Google Scholar 

  • Babitzke P, Yanofsky C (1993) Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci USA 90:133–137

    Google Scholar 

  • Bachem S, Stulke J (1998) Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system. J Bacteriol 180:5319–5326

    Google Scholar 

  • Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci USA 101:6421–6426

    Google Scholar 

  • Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171

    Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Google Scholar 

  • Chen G, Yanofsky C (2003) Tandem transcription and translation regulatory sensing of uncharged tryptophan tRNA. Science 301:211–213

    Google Scholar 

  • Darbon E, Servant P, Poncet S, Deutscher J (2002) Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol 43:1039–1052

    Google Scholar 

  • Débarbouillé M, Arnaud M, Fouet A, Klier A, Rapoport G (1990) The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172:3966–3973

    Google Scholar 

  • Epshtein V, Mironov AS, Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100:5052–5056

    Google Scholar 

  • Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA (1999) A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 15:439–442

    Google Scholar 

  • Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797

    Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    Google Scholar 

  • Graumann P, Wendrich TM, Weber MH, Schroder K, Marahiel MA (1997) A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756

    Article  CAS  PubMed  Google Scholar 

  • Grundy FJ, Henkin TM (1993) tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74:475–482

    Google Scholar 

  • Grundy FJ, Henkin TM (2003) The T box and S box transcription termination control systems. Front Biosci 8:d20–d31

    Google Scholar 

  • Grundy FJ, Henkin TM (2004) Regulation of gene expression by effectors that bind to RNA. Curr Opin Microbiol 7:126–131

    Google Scholar 

  • Grundy FJ, Collins JA, Rollins SM, Henkin TM (2000) tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene. RNA 6:1131–1141

    Google Scholar 

  • Grundy FJ, Winkler WC, Henkin TM (2002) tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc Natl Acad Sci USA 99:11121–11126

    Google Scholar 

  • Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100:12057–12062

    Google Scholar 

  • Gusarov I, Nudler E (1999) The mechanism of intrinsic transcription termination. Mol Cell 3:495–504

    Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825

    Article  CAS  PubMed  Google Scholar 

  • Holmberg C, Rutberg L (1992) An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription. Mol Microbiol 6:2931–2938

    Google Scholar 

  • Ingham CJ, Dennis J, Furneaux PA (1999) Autogenous regulation of transcription termination factor Rho and the requirement for Nus factors in Bacillus subtilis. Mol Microbiol 31:651–653

    Google Scholar 

  • Jackson EN, Yanofsky C (1973) The region between the operator and first structural gene of the tryptophan operon of Escherichia coli may have a regulatory function. J Mol Biol 76:89–101

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Google Scholar 

  • Johansen LE, Nygaard P, Lassen C, Agerso Y, Saxild HH (2003) Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 185:5200–5209

    Google Scholar 

  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561

    Google Scholar 

  • Kasai T (1974) Regulation of the expression of the histidine operon in Salmonella typhimurium. Nature 249:523–527

    Google Scholar 

  • Kreneva PA, Perumov DA (1990) Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol Gen Genet 222:467–469

    Google Scholar 

  • Kruger S, Hecker M (1995) Regulation of the putative bglPH operon for aryl-β-glucoside utilization in Bacillus subtilis. J Bacteriol 177:5590–5597

    Google Scholar 

  • Lai EC (2003) RNA sensors and riboswitches: self-regulating messages. Curr Biol 13:R285–R291

    Google Scholar 

  • Lindner C, Galinier A, Hecker M, Deutscher J (1999) Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol Microbiol 31:995–1006

    Google Scholar 

  • Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    Google Scholar 

  • Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Google Scholar 

  • Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    Google Scholar 

  • McCready P, Takagi M, Doi RH (1993) Regulation of Bacillus subtilis senS by homologous regulatory regions of senS and the inducible cat gene. Biochem Biophys Res Commun 193:1110–1115

    Google Scholar 

  • McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100:3083–3088

    Google Scholar 

  • Meng Q, Turnbough CL Jr, Switzer RL (2004) Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription. Proc Natl Acad Sci USA 101:10943–10948

    Google Scholar 

  • Merianos HJ, Wang J, Moore PB (2004) The structure of a ribosomal protein S8/spc operon mRNA complex. RNA 10:954–964

    Google Scholar 

  • Merino E, Yanofsky C (2002) Regulation by termination-antitermination: a genomic approach. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives. ASM, Washington, pp 323–336

    Google Scholar 

  • Michel F, Hanna M, Green R, Bartel DP, Szostak JW (1989) The guanosine binding site of the Tetrahymena ribozyme. Nature 342:391–395

    Google Scholar 

  • Miranda-Rios J, Navarro M, Soberon M (2001) A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 98:9736–9741

    Google Scholar 

  • Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    Google Scholar 

  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043

    Google Scholar 

  • Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150

    Google Scholar 

  • Narberhaus F (2002) mRNA-mediated detection of environmental conditions. Arch Microbiol 178:404–410

    Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus A (2001) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807

    Google Scholar 

  • Nomura M, Yates JL, Dean D, Post LE (1980) Feedback regulation of ribosomal protein gene expression in Escherichia coli: Structural homology of ribosomal RNA and ribosomal protein mRNA. Proc Natl Acad Sci USA 77:7084–7088

    Google Scholar 

  • Nou X, Kadner RJ (2000) Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 97:7190–7195

    Google Scholar 

  • Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17

    Google Scholar 

  • Oda M, Kobayashi N, Kurusu Y, Fujita M (2000) Analysis of histidine-dependent antitermination in Bacillus subtilis hut operon. Nucleic Acids Symp Ser 44:5–6

    Google Scholar 

  • Putzer H, Condon C, Brechemier-Baey D, Brito R, Grunberg-Manago M (2002) Transfer RNA-mediated antitermination in vitro. Nucleic Acids Res 30:3026–3033

    Google Scholar 

  • Quinn CL, Stephenson BT, Switzer RL (1991) Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem 266:9113–9127

    Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in prokaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959

    Google Scholar 

  • Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 31:6748–6757

    Google Scholar 

  • Rutberg B (1997) Antitermination of transcription of catabolic operons. Mol Microbiol 23:413–421

    Article  Google Scholar 

  • Schnetz K, Stulke J, Gertz S, Kruger S, Krieg M, Hecker M, Rak B (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979

    Google Scholar 

  • Shu D, Guo P (2003) A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. J Biol Chem 278:7119–7125

    Google Scholar 

  • Springer M, Portier C (2003) More than one way to skin a cat: translational autoregulation by ribosomal protein S15. Nat Struct Biol 10:420–422

    Google Scholar 

  • Springer M, Portier C, Grunberg-Manago M (1997) RNA mimicry in the translational apparatus. In: Simons RW, Grunberg-Manago M (eds) RNA structure and function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 377–414

    Google Scholar 

  • Steltzl U, Zengel JM, Tovbina M, Walker M, Nierhaus KH, Lindahl L, Patel DJ (2003) RNA-structural mimicry in Escherichia coli ribosomal protein L4-dependent regulation of the S10 operon. J Biol Chem 278:28237–28245

    Google Scholar 

  • Stormo GD, Ji Y (2001) Do mRNAs act as direct sensors of small molecules to control their expression? Proc Natl Acad Sci USA 98:9465–9467

    Google Scholar 

  • Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7:140–144

    Google Scholar 

  • Stulke J (2002) Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch Microbiol 177:433–440

    Google Scholar 

  • Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  PubMed  Google Scholar 

  • Stulke J, Arnaud M, Rapoport G, Martin-Verstraete I (1998) PRD—A protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol 28:865–874

    Google Scholar 

  • Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17:2688–2697

    Google Scholar 

  • Switzer RL, Turner RJ, Lu Y (1999) Regulation of the Bacillus subtilis pyrimidine biosynthetic operon by transcriptional attenuation: control of gene expression by an mRNA-binding protein. Prog Nucleic Acid Res Mol Biol 62:329–367

    Google Scholar 

  • Teixeira A, Tahiri-Alaoui A, West S, Thomas B, Ramadass A, Martianov I, Dye M, James W, Proudfoot NJ, Akoulitchev A (2004) Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. Nature 432:526–530

    Google Scholar 

  • Tortosa P, Le Coq D (1995) A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon. Microbiol 141:2921–2927

    Google Scholar 

  • Van der Ploeg JR, Barone M, Leisinger T (2001) Expression of the Bacillus subtilis sulphonate-sulphur utilization genes is regulated at the levels of transcription initiation and termination. Mol Microbiol 39:1356–1365

    Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151

    Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2003) Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 9:1084–1097

    Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50

    Google Scholar 

  • Wagner EG, Altuvia S, Romby P (2002) Antisense RNAs in bacteria and their genetic elements. Adv Genet 46:361–398

    Google Scholar 

  • Wang L, Park S, Doi R (1999) A novel Bacillus subtilis gene, antE, temporally regulated and convergent to and overlapping dnaE. J Bacteriol 181:353–356

    Google Scholar 

  • Wei BY, Bradbeer C, Kadner RJ (1992) Conserved structural and regulatory regions in the Salmonella typhimurium btuB for the outer membrane vitamin B12 transport protein. Res Microbiol 143:459–466

    Google Scholar 

  • Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chem Biochem 4:1024–1032

    Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002a) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    Google Scholar 

  • Winkler W, Nahvi A, Breaker RR (2002b) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Google Scholar 

  • Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Google Scholar 

  • Yamanaka K, Mitta M, Inouye M (1999) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181:6284–6291

    Google Scholar 

  • Yanofsky C (1981) Attenuation in the control of expression of bacterial operons. Nature 289:751–758

    Google Scholar 

  • Yanofsky C (2004) The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis. Trends Genet 20:367–374

    Google Scholar 

  • Yarnell WS, Roberts JW (1999) Mechanism of intrinsic transcription termination and antitermination. Science 284:611–615

    Google Scholar 

  • Yousef MR, Grundy FJ, Henkin TM (2003) tRNA requirements for glyQS antitermination: a new twist on tRNA. RNA 9:1148–1156

    Google Scholar 

  • Zengel JM, Lindahl L (1990) Ribosomal protein L4 stimulates in vitro termination of transcription at a NusA-dependent terminator in the S10 operon leader. Proc Natl Acad Sci USA 87:2675–2679

    Google Scholar 

  • Zengel JM, Lindahl L (1994) Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog Nucleic Acid Res Mol Biol 47:331–370

    Google Scholar 

Download references

Acknowledgements

I wish to thank Jennifer A. Collins and the reviewers of this manuscript for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade C. Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, W.C. Metabolic monitoring by bacterial mRNAs. Arch Microbiol 183, 151–159 (2005). https://doi.org/10.1007/s00203-005-0758-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0758-9

Keywords

Navigation