Skip to main content
Log in

Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The tricarboxylic acid (TCA) cycle is one of the major routes of carbon catabolism in Bacillus subtilis. The syntheses of the enzymes performing the initial reactions of the cycle, citrate synthase, and aconitase, are synergistically repressed by rapidly metabolizable carbon sources and glutamine. This regulation involves the general transcription factor CcpA and the specific repressor CcpC. In this study, we analyzed the expression and intracellular localization of CcpC. The synthesis of citrate, the effector of CcpC, requires acetyl-CoA. This metabolite is located at a branching point in metabolism. It can be converted to acetate in overflow metabolism or to citrate. Manipulations of the fate of acetyl-CoA revealed that efficient citrate synthesis is required for the expression of the citB gene encoding aconitase and that control of the two pathways utilizing acetyl-CoA converges in the control of citrate synthesis for the induction of the TCA cycle. The citrate pool seems also to be controlled by arginine catabolism. The presence of arginine results in a severe CcpC-dependent repression of citB. In addition to regulators involved in sensing the carbon status of the cell, the pleiotropic nitrogen-related transcription factor, TnrA, activates citB transcription in the absence of glutamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TCA:

Tricarboxylic acid

References

  • Alén C, Sonenshein AL (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci USA 96:10412–10417

    Article  PubMed  Google Scholar 

  • Atkinson MR, Fisher SH (1991) Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol 173:23–27

    PubMed  CAS  Google Scholar 

  • Belitsky BR (2002) Biosynthesis of amino acids of the glutamate and aspartate families, alanine and polyamines. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology Press, Washington, DC pp 203–231

    Google Scholar 

  • Belitsky BR, Sonenshein AL (1998) Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305

    PubMed  CAS  Google Scholar 

  • Belitsky BR, Wray LV, Fisher SH, Bohannon DE, Sonenshein AL (2000) Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol 182:5939–5947

    Article  PubMed  CAS  Google Scholar 

  • Belitsky BR, Sonenshein AL (2004) Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase. J Bacteriol 186:3399–3407

    Article  PubMed  CAS  Google Scholar 

  • Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Engn 5:133–149

    Article  CAS  Google Scholar 

  • Bohannon DE, Sonenshein AL (1989) Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol 171:4718–4727

    PubMed  CAS  Google Scholar 

  • Böhm A, Boos W (2004) Transport-dependent gene regulation by sequestration of transcriptional regulators. Top Curr Genet 9:47–66

    Google Scholar 

  • Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536–545

    Article  PubMed  CAS  Google Scholar 

  • Dauner M, Storni T, Sauer U (2001) Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol 183:7308–7317

    Article  PubMed  CAS  Google Scholar 

  • Dean AM, Lee MH, Koshland DE Jr (1989) Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding. J Biol Chem 264:20482–20486

    PubMed  CAS  Google Scholar 

  • Detsch C, Stülke J (2003) Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology 149:3289–3297

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Galinier A, Martin-Verstraete I (2002) Carbohydrate uptake and metabolism. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology Press, Washington, DC, pp 129–150

    Google Scholar 

  • Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Le Thi T, Büttner K, Buurmann G, Scharf C, Venz S, Völker U, Hecker M (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876

    Article  PubMed  CAS  Google Scholar 

  • Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M, Stülke J (1999) The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J Mol Microbiol Biotechnol 1:141–148

    PubMed  CAS  Google Scholar 

  • Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde−3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037

    Article  PubMed  CAS  Google Scholar 

  • Fisher SH, Débarbouillé M (2002) Nitrogen source utilization and its regulation. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology Press, Washington, DC, pp 181–191

    Google Scholar 

  • Fisher SH, Magasanik B (1984) 2-Ketoglutarate and the regulation of aconitase and histidase formation Bacillus subtilis. J Bacteriol 158:379–382

    PubMed  CAS  Google Scholar 

  • Fisher SH, Sonenshein AL (1984) Bacillus subtilis glutamine synthetase mutants pleiotropically altered in catabolite repression. J Bacteriol 157:612–621

    PubMed  CAS  Google Scholar 

  • Grundy FJ, Waters DA, Allen SH, Henkin TM (1993) Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355

    PubMed  CAS  Google Scholar 

  • Guérout-Fleury AM, Shazand K, Frandsen N, Stragier P (1995) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336

    Article  PubMed  Google Scholar 

  • Jourlin-Castelli C, Mani N, Nakano MM, Sonenshein AL (2000) CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295:865–878

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Jourlin-Castelli C, Kim SI, Sonenshein AL (2002a) Regulation of the Bacillus subtilis ccpC gene by CcpA and CcpC. Mol Microbiol 43:399–410

    Article  Google Scholar 

  • Kim HJ, Roux A, Sonenshein AL (2002b) Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 45:179–190

    Article  CAS  Google Scholar 

  • Kim SI, Jourlin-Castelli C, Wellington SR, Sonenshein AL (2003) Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J Mol Biol 334:609–624

    Article  PubMed  CAS  Google Scholar 

  • Krüger S, Stülke J, Hecker M (1993) Catabolite repression of β-glucanase synthesis in Bacillus subtilis. J Gen Microbiol 139:2047–2054

    PubMed  Google Scholar 

  • Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M. Stülke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Rebhan N, Blencke HM, Merzbacher M, Stülke J (2002) Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45:543–553

    Article  PubMed  CAS  Google Scholar 

  • Martin-Verstraete I, Débarbouillé M, Klier A, Rapoport G (1992) Mutagenesis of the Bacillus subtilis ‘-12,-24’ promoter of the levanase operon and evidence for the existence of an upstream activating sequence. J Mol Biol 226:85–99

    Article  PubMed  CAS  Google Scholar 

  • Martin-Verstraete I, Débarbouillé M, Klier A, Rapoport G (1994) Interactions of wild type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. J Mol Biol 241:178–192

    Article  PubMed  CAS  Google Scholar 

  • Matsuno K, Blais T, Serio AW, Conway T, Henkin TM, Sonenshein AL (1999) Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J Bacteriol 181:3382–3391

    PubMed  CAS  Google Scholar 

  • Meinken C, Blencke HM, Ludwig H, Stülke J (2003) Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon. Microbiology 149:751–761

    Article  PubMed  CAS  Google Scholar 

  • Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonet V, Martin-Verstraete I, Nessler S, Deutscher J (2001) Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J 20:3928–3937

    Article  PubMed  CAS  Google Scholar 

  • Moreno M S, Schneider BL, Maile RR, Weyler W, Saier MH Jr (2001) Catabolite repression mediated by CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381

    Article  PubMed  CAS  Google Scholar 

  • Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, Martin-Verstraete I (1999) The catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 181:6889–6897

    PubMed  CAS  Google Scholar 

  • Rosenkrantz MS, Dingman DW, Sonenshein AL (1985) Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J Bacteriol 164:155–164

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Saxild HH, Nygaard P (1987) Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 169:2977–2983

    PubMed  CAS  Google Scholar 

  • Schirmer F, Ehrt S, Hillen W (1997) Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179:1329–1336

    PubMed  CAS  Google Scholar 

  • Singh SK, Miller SP, Dean A, Banaszak LJ, LaPorte DC (2002) Bacillus subtilis isocitrate dehydrogenase. A substrate analogue for Escherichia coli isocitrate dehydrogenase kinase/phosphatase. J Biol Chem 277:7567–7573

    CAS  Google Scholar 

  • Sonenshein AL (2002) The Krebs citric acid cycle. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology Press, Washington, DC, pp 151–162

    Google Scholar 

  • Stülke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  PubMed  Google Scholar 

  • Tobisch S, Zühlke D, Bernhardt J, Stülke J, M Hecker (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181:6996–7004

    PubMed  CAS  Google Scholar 

  • Wacker I, Ludwig H, Reif I, Blencke HM, Detsch C, Stülke J (2003) The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology 149:3001–3009

    Article  PubMed  CAS  Google Scholar 

  • Weinrauch Y, Msadek T, Kunst F, Dubnau D (1991) Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 173:5685–5693

    PubMed  CAS  Google Scholar 

  • Wray LV Jr, Ferson AE, Rohrer K, Fisher SH (1996) TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA 93:8841–8845

    Article  PubMed  CAS  Google Scholar 

  • Wray LV Jr, Zalieckas JM, Fisher SH (2001) Bacillus subtilis glutamine synthetase controls gene expression through protein-protein interaction with transcription factor TnrA. Cell 107:427–435

    Article  PubMed  CAS  Google Scholar 

  • Yoshida KI, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi Y, Tojo S, Yamamoto M, Nishi R, Ogasawara N, Nakayama T, Fujita Y (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucl Acids Res 29:6683–6692

    Google Scholar 

Download references

Acknowledgments

We are grateful to Sabine Lentes for her help with some of the experiments. Linc Sonenshein is acknowledged for the critical reading of the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Stu 214/2-1; Stu 214/2-2) and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stülke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blencke, HM., Reif, I., Commichau, F.M. et al. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch Microbiol 185, 136–146 (2006). https://doi.org/10.1007/s00203-005-0078-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0078-0

Keywords

Navigation