Skip to main content
Log in

The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Lactobacillus casei BL23, phosphofructokinase activity was higher in cells utilizing sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphofructokinase gene (pfk) was cloned from L. casei and shown to be clustered with the gene encoding pyruvate kinase (pyk). pfk and pyk genes are cotranscribed and induced upon growth on sugars transported by the PTS. Contrarily to the model proposed for Lactococcus lactis, where the global catabolite regulator protein (CcpA) is involved in PTS-induced transcription of pfk and pyk, a ccpA mutation resulted in a slight increase in pfk–pyk expression in L. casei. This weak regulation was evidenced by CcpA binding to a region of the pfk–pyk promoter which contained two cre sequences significantly deviated from the consensus. The PTS induction of pfk–pyk seems to be counteracted by the CcpA-mediated repression. Our results suggest that the need to accommodate the levels of pfk–pyk mRNA to the availability of sugars is fulfilled in L. casei by a PTS/CcpA-mediated signal transduction different from L. lactis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asanuma N, Yoshii T, Hino N (2004) Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol 70:5244–5251

    Article  PubMed  CAS  Google Scholar 

  • Blencke HM, Homuth G, Ludwig H, Mader U, Hecker M, Stülke J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5:133–149

    Article  PubMed  CAS  Google Scholar 

  • van den Bogaard PTC, Kleerebezem M, Kuipers OP, de Vos WM (2000) Control of lactose transport, β-galactosidase, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. J bacteriol 182:5982–5989

    Article  PubMed  Google Scholar 

  • Branny P, De La Torre F, Garel JR (1993) The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. J Bacteriol 178:4727–4730

    Google Scholar 

  • Chen JD, Morrison DA (1988) Construction and properties of a new insertion vector, pJDC9, that is protected by transcriptional terminators and useful for cloning of DNA from Streptococcus pneumoniae. Gene 64:155–164

    Article  PubMed  CAS  Google Scholar 

  • Crispie F, Anba J, Renault P, Ehrlich D, Fitzgerald G, van Sinderen D (2002) Identification of a phosphofructokinase-encoding gene from Streptococcus thermophilus CNRZ1205–a novel link between carbon metabolism and gene regulation?. Mol Genet Genomics 268:500–509

    Article  PubMed  CAS  Google Scholar 

  • Daldal F (1983) Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol 168:285–305

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Küster E, Bergstedt U, Charrier V, Hillen W (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Deutscher J, Galinier A, Martin-Verstraete I (2002) Carbohydrate uptake and metabolism. In: Sonenschein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology Press, Washington, pp 129–150

    Google Scholar 

  • Doan T, Aymerich S (2003) Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol Microbiol 47:1709–1721

    Article  PubMed  CAS  Google Scholar 

  • Dossonnet V, Monedero V, Zagorec M, Galinier A, Pérez-Martínez G, Deutscher J. (2000) Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 182:2582–2590

    Article  PubMed  CAS  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2001) Molecular physiology of sugar catabolism in Lactococcus lactis IL1403. J Bacteriol 183:3817–3824

    Article  PubMed  CAS  Google Scholar 

  • Even S, Lindley ND, Cocaign-Bousquet M (2003) Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG1363 grown in continuous acidic cultures. Microbiology 149:1935–1944

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Miwa Y, Galinier A, Deutscher J (1995) Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17:953–960

    Article  PubMed  CAS  Google Scholar 

  • Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J, Haiech J (1998) New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci USA 95:1823–1828

    Article  PubMed  CAS  Google Scholar 

  • Gosalbes MJ, Monedero V, Alpert CA, Pérez-Martínez G (1997) Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148:83–89

    Article  PubMed  CAS  Google Scholar 

  • Griffin HG, I’Anson KJ, Gasson MJ (1993) Rapid isolation of genes from bacterial lambda libraries by direct polymerase chain reaction screening. FEMS Microbiol Lett 112:49–53

    Article  PubMed  CAS  Google Scholar 

  • Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  PubMed  CAS  Google Scholar 

  • Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, et al. (2002) Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82:29–58

    Article  PubMed  CAS  Google Scholar 

  • Koebmann B, Solem C, Jensen PR (2005) Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J 272:2292–2303

    Article  PubMed  CAS  Google Scholar 

  • Kravanja M, Engelmann R, Dossonnet V, Bluggel M, Meyer HE, Frank R, et al. (1999) The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol 31:59–66

    Article  PubMed  CAS  Google Scholar 

  • Leboeuf C, Leblanc L, Auffray Y, Hartke A (2000) Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by CcpA. J Bacteriol 182:5799–5806

    Article  PubMed  CAS  Google Scholar 

  • Leloup L, Ehrlich SD, Zagorec M, Morel-Deville F (1997) Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol 63:2117–2123

    PubMed  CAS  Google Scholar 

  • Llanos RM, Harris CH, Hillier AJ, Davidson BE (1993) Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase. J Bacteriol 175:2541–2551

    PubMed  CAS  Google Scholar 

  • Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M, Stülke J (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Rebhan N, Blencke HM, Merzbacher M, Stülke J (2002) Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45:543–553

    Article  PubMed  CAS  Google Scholar 

  • Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789–798

    Article  PubMed  CAS  Google Scholar 

  • Luesink EJ, Beumer CM, Kuipers OP, De Vos WM (1999) Molecular characterization of the Lactococcus lactis ptsHI operon and analysis of the regulatory role of HPr. J Bacteriol 181:764–771

    PubMed  CAS  Google Scholar 

  • Mahr K, Esteban CD, Hillen W, Titgemeyer F, Pérez-Martínez G (2002) Cross communication between components of carbon catabolite repression of Lactobacillus casei and Bacillus megaterium. J Mol Microbiol Biotechnol 4:489–494

    PubMed  CAS  Google Scholar 

  • Monedero V, Gosalbes MJ, Pérez-Martínez G (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179:6657–6664

    PubMed  CAS  Google Scholar 

  • Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39:1366–1381

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CC, Saier MH (1995) Phylogenetic analysis of the putative phosphorylation domain in the pyruvate kinase of Bacillus stearothermophilus. Res Microbiol 146:713–719

    Article  PubMed  CAS  Google Scholar 

  • Posno M, Leer RJ, van Luijk N, van Giezen MJF, Heuvelmans PTHM, Lokman BC, Pouwels PH (1991) Incompatibility of lactobacillus vectors with replicons derived from small cryptic lactobacillus plasmids and segregational instability of the introduced vectors. Appl Environ Microbiol 57:1822–1828

    PubMed  CAS  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Takahashi N, Kalfas S, Yamada T (1995) Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. J Bacteriol 177:5806–5811

    PubMed  CAS  Google Scholar 

  • Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82:59–71

    Article  PubMed  CAS  Google Scholar 

  • Veyrat A, Monedero V, Pérez-Martínez G (1994) Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140:1141–1149

    PubMed  CAS  Google Scholar 

  • Viana R, Monedero V, Dossonnet V, Vadeboncoeur C, Pérez-Martínez G, Deutscher J (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36:570–584

    Article  PubMed  CAS  Google Scholar 

  • Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G (2000) Genetics of L-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182:155–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank CD Esteban for pET plasmids expressing L. casei CcpA and HPr. Manuel Zúñiga is acknowledged for valuable discussions. This work was supported by the BIO4-CT96-0380 European project and by funds of the Spanish Ministerio de Educación y Ciencia (Project BIO2001-01616). Genome sequencing of L. casei BL23 was carried out at the University of Caen, Laboratoire de Microbiologie de l’Environnement and at the INRA Thiverval-Grignon, Microbiologie et Génétique Moléculaire, with the financial aide from the Region Basse Normandie and the INRA. RV was recipient of a fellowship from the Ministerio de Educación y Ciencia from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Monedero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viana, R., Pérez-Martínez, G., Deutscher, J. et al. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA. Arch Microbiol 183, 385–393 (2005). https://doi.org/10.1007/s00203-005-0003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0003-6

Keywords

Navigation