Skip to main content
Log in

Global transcription profiles and intracellular pH regulation measured in Bacillus licheniformis upon external pH upshifts

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

For optimization of propagation conditions for an industrially used Bacillus licheniformis, this study examines the effect of transferring cells at the early-stationary growth phase (pH 5.3) to fresh growth medium at pH 5.0–8.0. Intracellular pH (pHi) was measured on a single-cell level, using fluorescence ratio imaging microscopy after staining with 5(6)-carboxyfluorescein diacetate succinimidyl ester. Transcription profiles were determined using a genome DNA microarray. The optimum extracellular pH (pHex) value for growth of B. licheniformis was found to be pH 7.0, resulting in the shortest lag phase, highest maximum specific growth rate and maximum biomass formation. An average pH gradient (ΔpH = pHi − pHex) of approx. 1.0 was found in B. licheniformis 15 min after transfer to pHex 5.0–8.0. Up-regulation of genes involved in sucrose uptake at pH 7.0 could be related to the optimum growth observed. Transcription profiles indicated that the organism was experiencing phosphate starvation upon transfer to pH 7.0 and pH 8.0. Mechanisms involved in pHi regulation appeared to include changes in fatty acid synthesis to yield a more rigid cell membrane structure at low pHex values and conversion of pyruvate to acetoin instead of acetate for neutralization of low pHex values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar PS, Cronan JE, de Mendoza D (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200

    CAS  PubMed  Google Scholar 

  • Amanullah A, McFarlane CM, Emery AN, Nienow AW (2001) Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 73:390–399

    Article  CAS  PubMed  Google Scholar 

  • Atalla A, Schumann W (2003) The pst operon for Bacillus subtilis is specifically induced by alkali stress. J Bacteriol 185:5019–5022

    Article  CAS  PubMed  Google Scholar 

  • Beckering CL, Steil L, Weber MHW, Völker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer P, Drocourt J-L, Rombouts FM, Abee T (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5- (and 6-) carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62:178–183

    CAS  Google Scholar 

  • Budde BB, Jakobsen M (2000) Real-time measurements of the interaction between single cells of Listeria monocytogenes and nisin on a solid surface. Appl Environ Microbiol 66:3586–3591

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Kobel PA, Morshedi MM, Wu MFW, Paddon C, Helmann JD (2002) Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457

    Article  CAS  PubMed  Google Scholar 

  • Choi K-H, Heath RJ, Rock CO (2000) β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol 182:365–370

    Article  CAS  PubMed  Google Scholar 

  • Hall HK, Karem KL, Foster JW (1995) Molecular responses of microbes to environmental pH stress. Adv Microb Physiol 37:229–272

    CAS  PubMed  Google Scholar 

  • Halm M, Hornbæk T, Arneborg N, Sefa-Dedeh S, Jespersen L (2004) Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. Int J Food Microbiol 94:97–103

    Article  CAS  PubMed  Google Scholar 

  • Helmann JD, Wu MFW, Kobel PA, Gamo F-J, Wilson M, Morshedi MM, Navre M, Paddon C (2001) Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328

    Article  CAS  PubMed  Google Scholar 

  • Hornbæk T, Dynesen J, Jakobsen M (2002) Use of fluorescence ratio imaging microscopy and flow cytometry for estimation of cell vitality for Bacillus licheniformis. FEMS Microbiol Lett 215:261–265

    Article  PubMed  Google Scholar 

  • Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349

    CAS  PubMed  Google Scholar 

  • Lahooti M, Harwood CR (1999) Transcriptional analysis of the Bacillus subtilis teichuronic acid operon. Microbiology 145:3409–3417

    CAS  PubMed  Google Scholar 

  • Liu W, Eder. S, Hulett FM (1998) Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP∼P. J Bacteriol 180:753–758

    CAS  PubMed  Google Scholar 

  • Molina-Gutierrez A, Stippl V, Delgado A, Gänzle MG, Vogel RF (2002) In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol 68:4399–4406

    Article  CAS  PubMed  Google Scholar 

  • Morbidoni HR, Mendoza D de, Cronan JE (1996) Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes. J Bacteriol 178:4794–4800

    CAS  PubMed  Google Scholar 

  • Moszer I, Glaser P, Danchin A (1995) Subtilist: a relational database for the Bacillus subtilis genome. Microbiology 141:261–268

    CAS  PubMed  Google Scholar 

  • Olsen KN, Budde BB, Siegumfeldt H, Rechinger KB, Jakobsen M, Ingmer H (2002) Noninvasive measurement of bacterial intracellular pH on a single-cell level with green fluorescent protein and fluorescence ratio imaging microscopy. Appl Environ Microbiol 68:4145–4147

    Article  CAS  PubMed  Google Scholar 

  • Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, Martin-Verstraete I (1999) Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol 181:6889–6897

    CAS  PubMed  Google Scholar 

  • Qi Y, Hulett FM (1998a) Role of PhoP∼P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J Bacteriol 180:4007–4010

    CAS  PubMed  Google Scholar 

  • Qi Y, Hulett FM (1998b) PhoP∼P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP∼P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Quivey RG Jr, Faustoferri R, Monahan K, Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 189:89–92

    Article  CAS  PubMed  Google Scholar 

  • Renna MC, Najimudin N, Winik LR, Zahler SA (1993) Regulation of Bacillus subtilis alsS, alsD and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875

    CAS  PubMed  Google Scholar 

  • Siegumfeldt H, Rechinger KB, Jakobsen M (1999) Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures. Microbiology 145:1703–1709

    CAS  PubMed  Google Scholar 

  • Siegumfeldt H, Rechinger KB, Jakobsen M (2000) Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl Environ Microbiol 66:2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Soldo B, Lazarevic V, Pagni M, Karemata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31:795–805

    Article  CAS  PubMed  Google Scholar 

  • Tsau J-L, Guffanti AA, Montville TJ (1992) Conversion of pyruvate to acetoin helps to maintain pH-homeostasis in Lactobacillus plantarum. Appl Environ Microbiol 58:891–894

    CAS  Google Scholar 

  • Turinsky AJ, Moir-Blais TR, Grundy FJ, Henkin TM (2000) Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. J Bacteriol 182:5611–5614

    Article  CAS  PubMed  Google Scholar 

  • Wiegert T, Homuth G, Versteeg S, Wolfgang S (2001) Alkaline shock induces the Bacillus subtilis σW regulon. Mol Microbiol 41:59–71

    Article  CAS  PubMed  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Vant Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Google Scholar 

Download references

Acknowledgements

This work was carried out as part of an industrial PhD financially supported by the Danish Academy of Technical Sciences. The technical assistance of Annette Hansen is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Hornbæk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbæk, T., Jakobsen, M., Dynesen, J. et al. Global transcription profiles and intracellular pH regulation measured in Bacillus licheniformis upon external pH upshifts. Arch Microbiol 182, 467–474 (2004). https://doi.org/10.1007/s00203-004-0729-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0729-6

Keywords

Navigation