Skip to main content

Advertisement

Log in

Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, ∼3 μmol min−1 mg protein −1, and a K CO2 of 40.3 μM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3′ region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3′ region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

  • Bartnikas TB, Tosques IE, Laratta WP, Shi J, Shapleigh JP (1997) Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179:3534–3540

    CAS  PubMed  Google Scholar 

  • de Boer APN, van der Oost J, Reijnders WNM, Westerhoff HV, Stouthamer AH, van Spanning RJ (1996) Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans. Eur J Biochem 242:592–600

    PubMed  Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature (London) 302:58–61

    Google Scholar 

  • Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Amer Zool 34:79–89

    Google Scholar 

  • Cavanaugh CM, Robinson JJ (1996) CO2 fixation in chemoautotroph-invertebrate symbioses: expression of Form I and Form II RubisCO. In: Lindstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, Dordrecht, pp 285–292

  • Cavanaugh CM, Abbott MS, Veenhuis M (1988) Immunochemical localization of ribulose 1,5 bisphosphate carboxylase in the symbiont containing gills of Solemya velum (Bivalvia: Mollusca). Proc Natl Acad Sci USA 85:7786–7789

    CAS  Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441

    Google Scholar 

  • Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882

    CAS  PubMed  Google Scholar 

  • Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350

    CAS  PubMed  Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    CAS  PubMed  Google Scholar 

  • Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygense large-subunit genese from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Englert C, Kruger K, Offner S, Pfeifer F (1992) Three different but related gene clusters encoding gas vesicles in halophilic archaea. J Mol Biol 227:586–592

    CAS  PubMed  Google Scholar 

  • Faith DP (1991) Cladistic permutation tests for monophyly and nonmonophyly. Syst Zool 40:366–375

    Google Scholar 

  • Finn MW, Tabita FR (2003) Synthesis of catalytically active form III ribulose 1,5-bisphosphate carboxylase/oxygenase in archaea. J Bacteriol 185:3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Goffredi S, Childress J, Desaulniers N, Lee R, Lallier F, Hammond D (1997) Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external pCO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200:883–896

    CAS  PubMed  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  CAS  PubMed  Google Scholar 

  • Guy RD, Fogel ML, Berry JA (1993) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101:37–47

    CAS  PubMed  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  CAS  PubMed  Google Scholar 

  • Hayashi NR, Arai H, Kodama T, Igarashi Y (1997) The novel genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem Biophys Res Commun 241:565–569

    Article  CAS  PubMed  Google Scholar 

  • Hayashi NR, Arai H, Kodama T, Igarashi Y (1999) The cbbQ genes, located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem Biophys Res Commun 265:177–183

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR (1996) Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J Bacteriol 178:347–356

    CAS  PubMed  Google Scholar 

  • Horken KM, Tabita FR (1999) Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 361:183–194

    Article  CAS  PubMed  Google Scholar 

  • Igarashi Y, Kodama T (1996) Genes related to carbon dioxide fixation in Hydrogenovibrio marinus and Pseudomonas hydrogenothermophilia. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, Dordecht, pp 88–93

  • Jannasch H (1989) The microbial basis of life at deep-sea hydrothermal vents. ASM News 55:413–416

    Google Scholar 

  • Knight S, Andersson I, Branden CI (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol 215:113–160

    CAS  PubMed  Google Scholar 

  • Krueger DM, Cavanaugh CM (1997) Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl Enivron Microbiol 63:91–98

    CAS  Google Scholar 

  • Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155

    Article  CAS  PubMed  Google Scholar 

  • Li N, Cannon MC (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180:2450–2458

    CAS  PubMed  Google Scholar 

  • Li LA, Tabita FR (1997) Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. J Bacteriol 179:3793–3796

    CAS  PubMed  Google Scholar 

  • Martin WJ, Zeng LC, Ahmed K, Roy M (1994) Cytomegalovirus-related sequence in an atypical cytopathic virus repeatedly isolated from a patient with chronic fatigue syndrome. Am J Pathol 145:440–451

    CAS  PubMed  Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122

    CAS  PubMed  Google Scholar 

  • Murphy BA, Grundy FJ, Henkin TM (2002) Prediction of gene function in methylthioadenosine recycling from regulatory signals. J Bacteriol 184:2314–2318

    Article  CAS  PubMed  Google Scholar 

  • Nelson D, Fisher C (1995) Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea vents and seeps. In: Karl D (ed) Microbiology of deep-sea hydrothermal vents. CRC, Boca Raton

  • Niyogi SK, Foote RS, Mural RJ, Larimer FW, Mitra S, Soper TS, Machanoff R, Hartman FC (1986) Nonessentiality of histidine 291 of Rhodospirillum rubrum ribulose-bisphosphate carboxylase/oxygenase as determined by site-directed mutagenesis. J Biol Chem 261:10087–10092

    CAS  PubMed  Google Scholar 

  • Paoli GC, Soyer F, Shively J, Tabita FR (1998) Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Microbiology 144(Pt 1):219–227

    CAS  PubMed  Google Scholar 

  • Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  PubMed  Google Scholar 

  • Pfennig N, Truper HG (1992) The family Chromatiaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, Berlin Heidelberg New York, pp 3200–3221

  • Read BA, Tabita FR (1992) Amino acid substitutions in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase that influence catalytic activity of the holoenzyme. Biochemistry 31:519–525

    CAS  PubMed  Google Scholar 

  • Reznikoff WS, Siegele DA, Cowing DW, Gross CA (1985) The regulation of transcription initiation in bacteria. Annu Rev Genet 19:355–387

    Article  CAS  PubMed  Google Scholar 

  • Robinson JJ (1997) Biochemistry and molecular biology of RubisCO expression and stable carbon isotope fractionation in chemoautotrophic symbioses. Harvard University, Cambridge

  • Robinson JJ, Cavanaugh CM (1995) Expression of form I and form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubsico) in chemoautotrophic symbioses: implications for the interpretation of stable carbon isotope ratios. Limnol Oceanogr 40:1496–1502

    CAS  Google Scholar 

  • Robinson JJ, Stein JL, Cavanaugh CM (1998) Cloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila. J Bacteriol 180:1596–1599

    CAS  PubMed  Google Scholar 

  • Robinson JJ, Scott KM, Swanson ST, O’Leary MH, Horken K, Tabita FR, Cavanaugh CM (2003) Kinetic isotope effect and characterization of form II RubisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr 48:48–54

    CAS  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed craboxylation of ribulose bisphosphate. Biochemistry 23:6275–6284

    CAS  Google Scholar 

  • Roeske CA, O’Leary MH (1985) Carbon isotope effect on carboxylation of ribulose bisphosphate catalyzed by ribulosebisphosphate carboxylase from Rhodospirillum rubrum. Biochemistry 24:1603–1607

    CAS  PubMed  Google Scholar 

  • Sakurai N, Sakurai T (1998) Genomic DNA cloning of the region encoding nitric oxide reductase in Paracoccus halodenitrificans and a structure model relevant to cytochrome oxidase. Biochem Biophys Res Commun 243:400–406

    Article  CAS  PubMed  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    CAS  PubMed  Google Scholar 

  • Schaferjohann J, Bednarski R, Bowien B (1996) Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon. J Bacteriol 178:6714–6719

    CAS  PubMed  Google Scholar 

  • Schneider G, Knight S, Andersson I, Branden CI, Lindqvist Y, Lundqvist T (1990) Comparison of the crystal structures of L2 and L8S8 Rubisco suggests a functional role for the small subunit. Embo J 9:2045–2050

    CAS  PubMed  Google Scholar 

  • Schneider G, Lindqvist Y, Branden CI (1992) RUBISCO: structure and mechanism. Annu Rev Biophys Biomol Struct 21:119–143

    Article  CAS  PubMed  Google Scholar 

  • Scott KM, Schwedock J, Schrag DP, Cavanaugh CM (2004) Influence of form IA RubisCO and environmental disolved inorganic carbon on the del13C of the clam-bacterial chemoautotrophic symbions Solemya velum. Environ Microbiol (in press)

  • Sekowska A, Danchin A (2002) The methionine salvage pathway in Bacillus subtilis. BMC Microbiol 2:8

    Article  PubMed  Google Scholar 

  • Stein JL, Felbeck H (1993) Kinetic and physical properties of a recombinant RuBisCO from a chemoautotrophic endosymbiont. Mol Mar Biol Biotechnol 2:280–290

    CAS  PubMed  Google Scholar 

  • Stein J, Cary S, Hessler R, Ohta S, Vetter R, Childress J, Felbeck H (1988) Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol Bull 174:373–378

    CAS  Google Scholar 

  • Stein JL, Haygood M, Felbeck H (1990) Nucleotide sequence and expression of a deep-sea ribulose-1,5-bisphosphate carboxylase gene cloned from a chemoautotrophic bacterial endosymbiont. Proc Natl Acad Sci USA 87:8850–8854

    CAS  PubMed  Google Scholar 

  • Swofford DL (1999) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods), 4th edn. Sinauer Associates, Sunderland

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189

    CAS  PubMed  Google Scholar 

  • Tabita FR (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht

  • Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynthesis Res 60:1–28

    Article  CAS  Google Scholar 

  • Viale AM, Kobayashi H, Akazawa T (1989) Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes. J Bacteriol 171:2391–2400

    CAS  PubMed  Google Scholar 

  • Viale AM, Kobayashi H, Akazawa T (1990) Distinct properties of Escherichia coli products of plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase directed by two sets of genes from the photosynthetic bacterium Chromatium vinosum. J Biol Chem 265:18386–18392

    CAS  PubMed  Google Scholar 

  • Wilmot DB, Vetter RD (1992) Oxygen- and nitrogen-dependent sulfer metabolism in the thiotrophic clam Solemya reidi. Biol Bull 182:444–453

    CAS  Google Scholar 

  • Yaguchi T, Chung SY, Igarashi Y, Kodama T (1994) Cloning and sequence of the L2 form of RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. Biosci Biotechnol Biochem 58:1733–1737

    CAS  PubMed  Google Scholar 

  • Yanofsky C, Platt T, Crawford IP, Nichols BP, Christie GE, Horowitz H, VanCleemput M, Wu AM (1981) The complete nucleotide sequence of the tryptophan operon of Escherichia coli. Nucleic Acids Res 9:6647–6668

    CAS  PubMed  Google Scholar 

  • Yokota A, Kitaoka S (1985) Correct pK values for dissociation constant of carbonic acid lower the reported Km values of ribulose bisphosphate carboxylase to half. Presentation of a nomograph and an equation for determining the pK values. Biochem Biophys Res Commun 131:1075–1079

    CAS  PubMed  Google Scholar 

  • Yokoyama K, Hayashi NR, Arai H, Chung SY, Igarashi Y, Kodama T (1995) Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene 153:75–79

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Lee AM, Bassler BL, Roseman S (1991) Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266:24260–24267

    CAS  PubMed  Google Scholar 

  • Zengel JM, Mueckl D, Lindahl L (1980) Protein L4 of the E. coli ribosome regulates an eleven gene r protein operon. Cell 21:523–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jonathan Robinson, Meredith Hullar, and Adam McCoy for helpful discussions, Martin Polz for help with automated sequencing, and Zoe McKiness for assistance with phylogenetic analyses. We thank Robert Fisher for sending plasmids and George Lorimer for RubisCO antisera. This work was supported by NSF grants OCE-9504257 and OCE-0002460, and by NASA grant NAG5-10906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen M. Cavanaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwedock, J., Harmer, T.L., Scott, K.M. et al. Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO . Arch Microbiol 182, 18–29 (2004). https://doi.org/10.1007/s00203-004-0689-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0689-x

Keywords

Navigation