Skip to main content
Log in

Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a K m value of about 14 µM and a V max of about 5.4 µmol min−1 mg−1 and k cat of about 3.2 s−1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTΔfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Benkovic SJ, deMaine MM (1982) Mechanism of action of fructose-1,6-bisphosphatase. Adv Enzymol Relat Areas Mol Biol 53:45–82

    CAS  PubMed  Google Scholar 

  • Chambost JP, Fraenkel DG (1980) The use of 6-labeled glucose to assess futile cycling in Escherichia coli. J Biol Chem 255:2867–2869

    CAS  PubMed  Google Scholar 

  • Daldal, F, Fraenkel, DG (1983) Assessment of a futile cycle involving reconversion of fructose-6-phosphate to fructose-1,6-bisphosphate during gluconeogenic growth of Escherichia coli. J Bacteriol 153:390–394

    CAS  PubMed  Google Scholar 

  • Donahue JL, Bownas JL, Niehaus WG, Larson TJ (2000) Purification and characterization of glpX-encoded fructose-1,6-bisphosphatase, a new enzyme of the glycerol-3-phosphate regulon of Escherichia coli. J Bacteriol 182:5624–5627

    Article  CAS  PubMed  Google Scholar 

  • Eggeling L, Krumbach K, Sahm H (2001) l-glutamate efflux with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same? J Mol Microbiol Biotechnol 3:67–68

    Google Scholar 

  • Eikmanns BJ (1992) Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol 174:6076–6086

    CAS  PubMed  Google Scholar 

  • Eikmanns BJ, Follettie MT, Griot MU, Sinskey AJ (1989) The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218:330–339

    CAS  PubMed  Google Scholar 

  • Fraenkel DG (1996) Glycolysis In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M and Umbarger HE (Eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, DC, pp 189–198

  • Fraenkel DG, Horecker BL (1965) Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol 90:837–42

    CAS  PubMed  Google Scholar 

  • Fujita Y, Freese E (1981) Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J Bacteriol 145:760–767

    CAS  PubMed  Google Scholar 

  • Fujita Y, Yoshida K, Miwa Y, Yanai N, Nagakawa E, Kasahara Y (1998) Identification and expression of the Bacillus subtilis fructose-1,6-bisphosphatase gene (fbp). J Bacteriol 180:4309–4013

    CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177:751–766

    Google Scholar 

  • Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987

    Article  CAS  PubMed  Google Scholar 

  • Gubler M, Jetten M, Lee SH, Sinskey AJ (1994) Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol 60:2494–2500

    CAS  PubMed  Google Scholar 

  • Jakoby M, Ngouto-Nkili CE, Burkovski A (1999) Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13:437–41

    CAS  Google Scholar 

  • Jetten MSM, Sinskey, AJ (1993) Characterization of phosphoenolpyruvate carboxykinase from Corynebacterium glutamicum. FEMS Microbiol Lett 111:183–188

    Article  CAS  Google Scholar 

  • Jetten MSM, Sinskey, AJ (1995) Purification and properties of oxaloacetate decarboxylase from Corynebacterium glutamicum. Antonie van Leeuwenhoek 67:221–227

    CAS  PubMed  Google Scholar 

  • Johnson KA, Chen L, Yang H, Roberts MF, Stec B (2001) Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol-monophosphatase and fructose-1,6-bisphosphatase activities. Biochemistry 40:618–30

    Article  CAS  PubMed  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–603

    CAS  PubMed  Google Scholar 

  • Kelley-Loughnane N, Biolsi SA, Gibson KM, Lu G, Hehir MJ, Phelan P, Kantrowitz ER (2002) Purification, kinetic studies, and homology model of Escherichia coli fructose-1,6-bisphosphatase. Biochim Biophys Acta 1594:6–16

    Article  PubMed  Google Scholar 

  • Krämer R, Lambert C, Hoischen C, Ebbighausen H (1990) Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur J Biochem 194:929–935

    PubMed  Google Scholar 

  • Leuchtenberger W (1996) Amino acids—technical production and us. In: Rehm HJ, Reed G, Pühler A, Stadler P and Roehr M (eds) Biotechnology, vol. 6. VCH Verlagsgesellschaft, Weinheim, pp 465–502

  • Liebl W (1991) The genus Corynebacterium— nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1157–1171

  • Lin ECC (1996) Dissimilatory pathways of sugars, polyols, and carboxylates In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, vol 1. American Society for Microbiology, Washington, DC, pp 307–342

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  Google Scholar 

  • Navas MA, Gancedo JM (1996) The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage. J Bacteriol 178:1809–1812

    CAS  PubMed  Google Scholar 

  • Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428

    CAS  PubMed  Google Scholar 

  • Petersen S, de Graaf AA, Eggeling L, Möllney M, Wiechert W, Sahm H (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J Biol Chem 275:35932–35941

    CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Eikmanns BJ, Thierbach G, Bachmann B, Sahm H (1993) Phosphoenolpyruvate carboxylase in Corynebacterium glutamicum is dispensable for growth and lysine production. FEMS Microbiol Lett 112:269–274

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Pyruvate carboxylase as anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103

    CAS  Google Scholar 

  • Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927

    CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Reinscheid DJ, Eikmanns BJ, Sahm H (1994a) Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol 176:3474–3483

    CAS  Google Scholar 

  • Reinscheid DJ, Eikmanns BJ, Sahm H (1994b) Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme. Microbiology 140:3099–3108

    CAS  PubMed  Google Scholar 

  • Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

    PubMed  Google Scholar 

  • Schwinde JW, Thum-Schmitz N, Eikmanns BJ, Sahm H (1993) Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. J Bacteriol 175:3905–3908

    CAS  PubMed  Google Scholar 

  • Sedivy JM, Daldal F, Fraenkel DG (1984) Fructose-bisphosphatase of Escherichia coli: cloning of the structural gene (fbp) and preparation of a chromosomal deletion. J Bacteriol 158:1048–1053

    CAS  PubMed  Google Scholar 

  • Sonntag K, Schwinde J, de Graaf AA, Marx A, Eikmanns BJ, Wiechert W, Sahm H (1995) 13C-NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures. Appl Microbiol Biotechnol 44:489–495

    Article  CAS  Google Scholar 

  • Sugimoto SI, Shiio I (1987) Regulation in glucose-6-phosphate dehydrogenase in Brevibacterium flavum. Agric Biol Chem 51:101–108

    CAS  Google Scholar 

  • Titgemeyer F, Hillen W (2002) Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek 82:59–71

    Article  CAS  PubMed  Google Scholar 

  • Torres JC, Guixe V, Babul J (1997) A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli. Biochem J 327:675–684

    CAS  PubMed  Google Scholar 

  • Truniger V, Boos W, Sweet G (1992) Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J Bacteriol 174:6981–6991

    CAS  PubMed  Google Scholar 

  • Verhees CH, Akerboom J, Schiltz E, de Vos WM, van der Oost J (2002) Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus. J Bacteriol 184:3401–3405

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittmann, D., Schaffer, S., Wendisch, V.F. et al. Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180, 285–292 (2003). https://doi.org/10.1007/s00203-003-0588-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0588-6

Keywords

Navigation