Skip to main content
Log in

Isolation and characterization of maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes missouriensis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Crude extracts of Actinoplanes missouriensis and related strains catalyze the ATP-dependent phosphorylation of maltose to maltose 1-phosphate. The enzyme of A. missouriensis responsible for this reaction was purified and characterized. This protein has an estimated molecular mass of 57 kDa and it is most likely a monomer. The K m value was 2.6 mM for maltose and 0.54 mM for ATP. Only maltose acted effectively as phosphoryl-group acceptor, and ATP was not replaceable as phosphoryl-group donor. Tryptic peptides of the enzyme were sequenced, and the sequences of these peptides will allow construction of degenerate primers to identify the gene coding for this unique kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4. a

Similar content being viewed by others

References

  • Andersson U, Levander F, Radström P (2001) Trehalose 6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J Biol Chem 276:42707–42713

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse, Band I und II. Verlag Chemie, Weinheim

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Childs RE, Bardsley W G (1975) The steady state kinetics of peroxidase with 2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145:93–103

    CAS  PubMed  Google Scholar 

  • Decker K, Peist R, Reidel J, Kossmann M, Brand B, Boos W (1993) Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose 1-phosphate independently of enzymes of the maltose system. J Bacteriol 175:5655–5665

    CAS  PubMed  Google Scholar 

  • Decker K, Gerhardt F, Boos W (1999) The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Mol. Microbiol 32:777–788

    CAS  PubMed  Google Scholar 

  • Drepper A, Peitzmann K, Pape H (1996) Maltokinase (ATP: maltose 1-phosphotransferase) from Actinoplanes sp.: demonstration of enzyme activity and characterization of the reaction product. FEBS Lett 388:177–179

    Article  CAS  PubMed  Google Scholar 

  • Gutmann I (1974) In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

  • Hammes GG, Kochavi D (1962) Hexokinase. II. Kinetic inhibition by products. J Am Chem Soc 84:2073–2076

    CAS  Google Scholar 

  • Kamionka A, Parche S, Nothaft H, Siepelmeyer J, Jahreis K, Titgemeyer F (2002) The phosphotransferase system of Streptomyces coelicolor. IIACrr exhibits properties that resemble transport and inducer exclusion function of enzyme IIAGlucose of Escherichia coli. Eur J Biochem 269:2143–2150

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • LeGendre N, Matsudaira PT (1989) Purification of proteins and peptides by SDS-PAGE. In: Matsudaira PT (ed) A practical guide to protein and peptide purification for microsequencing. Academic, San Diego

  • Lobelle-Rich P, Reeves RE (1982) Galactose 1-phosphate uridyltransferase from Entamoeba histolytica. Meth Enzymol 90:552–555

    CAS  PubMed  Google Scholar 

  • Nesterenko MV, Tilley M, Upton SJ (1994) A simple modification of Blum´s silver stain method allows for 30 min detection of proteins in polyacrylamide gels. J. Biochem Biophys Methods 28:239-242

    Article  CAS  Google Scholar 

  • Nordlie L, Lardy H (1962) Phosphoryl group transfer. In: Boyer PD, Lardy H, Myrbäck K (eds) The enzymes, 2nd edn, vol 6. Academic, New York

  • Palmer RE, Anderson RL (1972a) Cellobiose metabolism in Aerobacter aerogenes: II. Phosphorylation of cellobiose with adenosine-5-triphosphate by a β-glucoside kinase. J Biol Chem 247:3415–3419

    CAS  PubMed  Google Scholar 

  • Palmer RE, Anderson RL (1972b) Cellobiose metabolism in Aerobacter aerogenes: III. Cleavage of cellobiose monophosphate by a phospho-β-glucosidase. J Biol Chem 247:3420–3423

    CAS  PubMed  Google Scholar 

  • Parche S, Schmid R, Titgemeyer F (1999) The phosphotransferase system (PTS) of Streptomyces coelicolor. Identification and biochemical analysis of a histidine phosphocarrier protein HPr encoded by the gene ptsH. Eur J Biochem 265:308–317

    CAS  PubMed  Google Scholar 

  • Parenti F, Coronelli C (1979) Members of the genus Actinoplanes and their antibiotics. Annu Rev Microbiol 33:389–411

    Article  CAS  PubMed  Google Scholar 

  • Pharmacia (1982) Isoelectric focusing: principles and methods, Uppsala. Sweden

    Google Scholar 

  • Porter EV, Chassy BM (1982) Glucokinase from Streptococcus mutans. Methods Enzymol 90:25–30

    CAS  PubMed  Google Scholar 

  • Porter EV, Chassy BM, Holmlund CE (1982) Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells. Biochim Biophys Acta 709:178–86

    CAS  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  PubMed  Google Scholar 

  • Sánchez JC, Gímenez R, Schneider A, Fessner W-D, Baldomà L, Aguilar J, Badía J (1994) Activation of a cryptic gene encoding a kinase for l-xylulose opens a new pathway for the utilization of l-xylose by Escherichia coli. J Biol Chem 269:29665–29669

    PubMed  Google Scholar 

  • Schlösser A, Schrempf H (1996) A lipid-anchored binding protein is a component of an ATP-dependent cellobiose/cellotriose-transport system from the cellulose degrader Streptomyces reticuli. Eur J Biochem 242:332–328

    PubMed  Google Scholar 

  • Seiler U (1997) Zur Pyrophosphat-abhängigen Phosphofructokinase des Acarbose-Produzenten Actinoplanes sp.. Dissertation, Westfälische Wilhelms-Universität Münster

  • Titgemeyer F, Waklenhorst J, Reizer J, Stuvier MH, Cui X, Saier MH Jr. (1995) Identification and characterization of phosphoenolpyruvat phosphotransferase system in three Streptomyces species. Microbiology 141:51–58

    CAS  PubMed  Google Scholar 

  • Vobis G (1989) In: Williams ST, Sharpe ME, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Pape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehues, B., Jossek, R., Kramer, U. et al. Isolation and characterization of maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes missouriensis . Arch Microbiol 180, 233–239 (2003). https://doi.org/10.1007/s00203-003-0575-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0575-y

Keywords

Navigation