Skip to main content

Advertisement

Log in

A novel converter using MPPT algorithm and acceleration factor for standalone PV system

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Solar power is an excellent alternative to existing power sources; standalone PV systems demonstrate its importance. PV panels are the energy source for connected loads, with storage systems or batteries necessary due to solar insolation’s intermittency. The present investigation uses a novel high-efficiency DC-DC converter to perform the maximum power point tracking (MPPT). This converter enables the connection of solar panels in series or parallel because it can step up or step down the PV voltage according to the DC link voltage. A bidirectional DC-DC converter is also used at the load side to maintain DC link voltage and charge/discharge the batteries. The second part of the paper discusses a modified Perturb and Observe (P &O) MPPT algorithm, which is vital in tapping the maximum power from PV panels. A fast solar MPPT is desired to track the operating point, which can be served by adding an acceleration factor to the existing P &O (hill climbing) solar MPPT algorithm. With the inclusion of the proposed converter and modification in P &O algorithm, the obtained system’s efficiency is approximately 96% and tracking time reduced from 7 sec to 3.7 sec. The detailed analysis of component efficiency provides valuable insights into the performance of the system. A comprehensive simulation and hardware results obtained for various irradiation (Ropp, sine, step, ramp, less, no, etc.), temperature, loads, and acceleration factors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Carrasco JM, Franquelo LG, Bialasiewicz JT, Galvan E, PortilloGuisado RC, Prats MAM, Leon JI, Moreno-Alfonso N (2006) Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Electron 53(4):1002–1016. https://doi.org/10.1109/TIE.2006.878356

    Article  Google Scholar 

  2. Debnath D, Chatterjee K (2015) Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment. IEEE Trans Ind Electron 62(7):4148–4157. https://doi.org/10.1109/TIE.2014.2379584

    Article  Google Scholar 

  3. Gao L, Dougal RA, Liu S, Iotova AP (2009) Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans Ind Electron 56(5):1548–1556. https://doi.org/10.1109/TIE.2008.2011296

    Article  Google Scholar 

  4. Umanand L (ed) (2009) Power electronics essentials and applications. Wiley, New York

  5. Erickson RW, Maksomovic D (eds) (2001) Fundamentals of power electronics. Kluwer Academic, New York

  6. Subudhi B, Pradhan R (2013) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans Sustain Energy 4(1):89–98. https://doi.org/10.1109/TSTE.2012.2202294

    Article  Google Scholar 

  7. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449. https://doi.org/10.1109/TEC.2006.874230

    Article  Google Scholar 

  8. Basoglu ME, Cakır B (2016) Comparisons of MPPT performances of isolated and non-isolated DC-DC converters by using a new approach. Renew Sustain Energy Rev 60:1100–1113. https://doi.org/10.1016/j.rser.2016.01.128

    Article  Google Scholar 

  9. Diab Marzouk A, Trescases O (2015) SiC based bidirectional CUK converter with differential power processing and MPPT for a solar powered aircraft. IEEE Trans Transp Electr 1(4):369–381. https://doi.org/10.1109/TTE.2015.2505302

    Article  Google Scholar 

  10. Mohan U, Robbins (eds) (2007) Power electronics: converters applications and design. Wiley, New York

  11. Tomar A (2020) Watkins–Johnson converter based PV water pumping system. In: 2020 IEEE 17th India council international conference (INDICON), pp 1–5. https://doi.org/10.1109/INDICON49873.2020.9342194

  12. Grant DA, Darroman Y (2003) Watkins–Johnson converter completes tapped inductor converter matrix. Electron Lett 39(3):271–272. https://doi.org/10.1049/el:20030186

    Article  Google Scholar 

  13. Banaei MR, Bonab HAF (2020) A high efficiency nonisolated buck-boost converter based on zeta converter. IEEE Trans Ind Electron 67(3):1991–1998. https://doi.org/10.1109/TIE.2019.2902785

    Article  Google Scholar 

  14. Zhu B, Hu S, Liu G, Huang Y, She X (2020) Low-voltage stress buck-boost converter with a high-voltage conversion gain. IEEE Access 8:95188–95196. https://doi.org/10.1109/ACCESS.2020.2995889

    Article  Google Scholar 

  15. Ahmad HJ, Hagiwara M (2022) A compact high-power noninverting bidirectional buck-boost chopper for onboard battery energy storage systems. IEEE Trans Power Electron 37(2):1722–1735. https://doi.org/10.1109/TPEL.2021.3106240

    Article  Google Scholar 

  16. Yari K, Mojallali H, Shahalami SH (2022) A new coupled-inductor-based buck-boost DC-DC converter for PV applications. IEEE Trans Power Electron 37(1):687–699. https://doi.org/10.1109/TPEL.2021.3101905

    Article  Google Scholar 

  17. Prakash D, Raiker GA, Agrawal S (2021) Solar PV charge controller with battery management system using voltage reference control. In: 2021 IEEE 4th international conference on computing, power and communication technologies (GUCON), pp 1–6. https://doi.org/10.1109/GUCON50781.2021.9573904

  18. Caracas JVM, Farias GDC, Teixeira LFM, Ribeiro LADS (2014) Implementation of a high-efficiency, high-lifetime, and low-cost converter for an autonomous photovoltaic water pumping system. IEEE Trans Ind Appl 50(1):631–641. https://doi.org/10.1109/TIA.2013.2271214

    Article  Google Scholar 

  19. Kanathipan K, Lam J (2022) A high voltage gain isolated PV micro-converter with a single-voltage maximum power point tracking control loop for DC micro-grid systems. IEEE J Emerg Sel Top Ind Electron 3(3):755–765. https://doi.org/10.1109/JESTIE.2021.3130473

    Article  Google Scholar 

  20. Das M, Agarwal V (2015) Novel high-performance stand-alone solar PV system with high-gain high-efficiency DC-DC converter power stages. IEEE Trans Ind Appl 51(6):4718–4728. https://doi.org/10.1109/TIA.2015.2454488

    Article  Google Scholar 

  21. Sher HA, Rizvi AA, Addoweesh KE, Al-Haddad K (2017) A single-stage stand-alone photovoltaic energy system with high tracking efficiency. IEEE Trans Sustain Energy 8(2):755–762. https://doi.org/10.1109/TSTE.2016.2616443

    Article  Google Scholar 

  22. Agrawal S, Umanand L, Subba Reddy B, Mohapatra T, Abhishek K (2022) A novel DC-DC converter with extended range of gain for buck-boost applications. In: 2022 IEEE international conference on power electronics, smart grid, and renewable energy (PESGRE), pp 1–7. https://doi.org/10.1109/PESGRE52268.2022.9715912

  23. Maheswari L, Sivakumaran N (2020) An isolated single-switch high step-up DC-DC converter with three-winding transformer for solar photovoltaic applications. Electr Eng 102:1383–1392. https://doi.org/10.1007/s00202-020-00959-y

    Article  Google Scholar 

  24. Premkumar M, Kumar C, Anbarasan A (2020) A novel non-isolated high step up DC-DC boost converter using single switch for renewable energy systems. Electr Eng 102:811–829. https://doi.org/10.1007/s00202-019-00904-8

    Article  Google Scholar 

  25. Gokdag M (2022) PV fed non isolated resonant converter for DC microgrid applications. Electr Eng 104:3893–3913. https://doi.org/10.1007/s00202-022-01589-2

    Article  Google Scholar 

  26. Aljarajreh H, Lu DD-C, Siwakoti YP, Aguilera RP, Tse CK (2021) A method of seamless transitions between different operating modes for three port DC-DC converters. IEEE Access 9:59184–59195. https://doi.org/10.1109/ACCESS.2021.3073948

    Article  Google Scholar 

  27. Swaminathan N, Lakshminarasamma N, Cao Y (2022) A fixed zone perturb and observe MPPT technique for a standalone distributed PV system. IEEE J Emerg Sel Top Power Electron 10(1):361–374. https://doi.org/10.1109/JESTPE.2021.3065916

    Article  Google Scholar 

  28. Selvakumar S, Madhusmita M, Koodalsamy C, Simon SP, Sood YR (2019) High speed maximum power point tracking module for PV systems. IEEE Trans Ind Electron 66(2):1119–1129. https://doi.org/10.1109/TIE.2018.2833036

    Article  Google Scholar 

  29. Abdel-Salam M, El-Mohandes MT, El-Ghazaly M (2020) An efficient tracking of MPP in PV systems using a newly formulated P &O MPPT method under varying irradiation levels. J Electr Eng Technol 15:501–513. https://doi.org/10.1007/s42835-019-00283-x

    Article  Google Scholar 

  30. Lashab A, Sera D, Guerrero JM (2019) A dual-discrete model predictive control-based MPPT for PV systems. IEEE Trans Power Electron 34(10):9686–9697. https://doi.org/10.1109/TPEL.2019.2892809

    Article  Google Scholar 

  31. Zurbriggen IG, Ordonez M (2019) PV energy harvesting under extremely fast changing irradiance state plane direct MPPT. IEEE Trans Ind Electron 66(3):1852–1861. https://doi.org/10.1109/TIE.2018.2838115

    Article  Google Scholar 

  32. Hasabelrasul H, Cai Z, Sun L, Suo X, Matraji I (2022) Two stage converter standalone PV battery system based on VSG control. IEEE Access 10:39825–39832. https://doi.org/10.1109/ACCESS.2022.3165664

    Article  Google Scholar 

  33. Meng X, Gao F, Xu T, Zhang C (2022) Fast two stage global maximum power point tracking for grid tied string PV inverter using characteristics mapping principle. IEEE J Emerg Sel Top Power Electron 10(1):564–574. https://doi.org/10.1109/JESTPE.2021.3104036

  34. Ghaderi D (2020) An FPGA-based switching photovoltaic-connected inverter topology for leakage current suppression in grid-connected utilizations. Int J Circuit Theory Appl 48(10):1724–1743. https://doi.org/10.1002/cta.2844

    Article  Google Scholar 

  35. Agrawal S, Umanand L, Reddy B (2022) AC analysis on the modified Johnson converter. In: Mekhilef S, Shaw RN, Siano P (eds) Innovations in electrical and electronic engineering, vol 894. ICEEE 2022. Springer, Singapore, pp 261–270

  36. Raiker GA, Loganathan U, Reddy BS (2021) Current control of boost converter for PV interface with momentum-based perturb and observe MPPT. IEEE Trans Ind Appl 57(4):4071–4079. https://doi.org/10.1109/TIA.2021.3081519

    Article  Google Scholar 

  37. Ahmed J, Salam Z (2015) An improved perturb and observe (P &O) maximum power point tracking (MPPT) algorithm for higher efficiency. Appl Energy 150:97–108. https://doi.org/10.1016/j.apenergy.2015.04.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Agrawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Umanand, L. & Basappa, S.R. A novel converter using MPPT algorithm and acceleration factor for standalone PV system. Electr Eng 105, 3681–3702 (2023). https://doi.org/10.1007/s00202-023-01916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01916-1

Keywords

Navigation