Skip to main content

Advertisement

Log in

Design and controller implementation of 3.3 kW bridgeless boost-fed three-level resonant converter for EV battery charging

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the systematic design methodology of a 3.3 kW, level 2 battery charger with improved grid power factor for EV applications. The charging of the battery bank from the utility grid through bridgeless interleaved boost (BIB) converter and the proposed three-level modified series–parallel resonant converter is explained in detail. The proposed topology offers low voltage stress equal to half of the DC link voltage across the switches as three-level is implemented in the resonant stage. The transformer parasitics are taken into consideration and the design of resonant stage for frequency modulation is elaborated. One of the major concerns of the charging system is the grid power factor which is largely affected by power electronic switching operation. The detailed controller design procedure for power factor correction of BIB and DC link voltage regulation is elaborated in this paper. Simulation results obtained using PSIM software prove that the power factor is close to unity with less supply current total harmonic distortion as per IEC 61000-3-2 standard. The proposed resonant converter switches achieve zero voltage switching for above resonant frequency operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Husain I et al (2021) Electric drive technology trends, challenges, and opportunities for future electric vehicles. Proc IEEE 109(6):1039–1059. https://doi.org/10.1109/JPROC.2020.3046112

    Article  Google Scholar 

  2. Emadi A (2015) Advanced electric drive vehicles. CRC Press, Taylor and Francis Group. ISBN-13: 978-1-4665-9770-9

  3. Li S, Deng J, Mi CC (2013) Single-stage resonant battery charger with inherent power factor correction for electric vehicles. IEEE Trans Veh Technol 62(9):4336–4344. https://doi.org/10.1109/TVT.2013.2265704

    Article  Google Scholar 

  4. Antivachis M, Anderson JA, Bortis D, Kolar JW (2020) Analysis of a synergetically controlled two-stage three-phase DC/AC buck-boost converter. CPSS Trans Power Electron Appl 5(1):34–53. https://doi.org/10.24295/CPSSTPEA.2020.00004

    Article  Google Scholar 

  5. Oh C, Kim D, Woo D, Sung W, Kim Y, Lee B (2013) A high-efficient nonisolated single-stage on-board battery charger for electric vehicles. IEEE Trans Power Electron 28(12):5746–5757. https://doi.org/10.1109/TPEL.2013.2252200

    Article  Google Scholar 

  6. Wang H, Dusmez S, Khaligh A (2014) Design and analysis of a full-bridge LLC-based PEV charger optimized for wide battery voltage range. IEEE Trans Veh Technol 63(4):1603–1613. https://doi.org/10.1109/TVT.2013.2288772

    Article  Google Scholar 

  7. Park M-H, Baek J, Jeong Y, Moon G-W (2019) An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control. IEEE Trans Power Electron 34(11):10610–10618. https://doi.org/10.1109/TPEL.2019.2900342

    Article  Google Scholar 

  8. Musavi F, Eberle W, Dunford WG (2011) A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers. IEEE Trans Ind Appl 47(4):1833–1843. https://doi.org/10.1109/TIA.2011.2156753

    Article  Google Scholar 

  9. Li G, Xia J, Wang K, Deng Y, He X, Wang Y (2020) A single-stage interleaved resonant bridgeless boost rectifier with high-frequency isolation. IEEE J Emerg Sel Top Power Electron 8(2):1767–1781. https://doi.org/10.1109/JESTPE.2019.2912434

    Article  Google Scholar 

  10. Wu H, Mu T, Ge H, Xing Y (2016) Full-range soft-switching-isolated buck-boost converters with integrated interleaved boost converter and phase-shifted control. IEEE Trans Power Electron 31(2):987–999. https://doi.org/10.1109/TPEL.2015.2425956

    Article  Google Scholar 

  11. Spiazzi G (2019) Analysis and design of the soft-switched clamped-resonant interleaved boost converter. CPSS Trans Power Electron Appl 4(4):276–287. https://doi.org/10.24295/CPSSTPEA.2019.00026

    Article  Google Scholar 

  12. Salem M et al (2020) Three-phase series resonant DC–DC boost converter with double LLC resonant tanks and variable frequency control. IEEE Access 8:22386–22399. https://doi.org/10.1109/ACCESS.2020.2969546

    Article  Google Scholar 

  13. Xuan Y, Yang X, Chen W, Liu T, Hao X (2021) A novel three-level CLLC resonant DC–DC converter for bidirectional EV charger in DC microgrids. IEEE Trans Ind Electron 68(3):2334–2344. https://doi.org/10.1109/TIE.2020.2972446

    Article  Google Scholar 

  14. Agamy MS, Jain PK (2009) A three-level resonant single-stage power factor correction converter: analysis, design, and implementation. IEEE Trans Ind Electron 56(6):2095–2107. https://doi.org/10.1109/TIE.2009.2014744

    Article  Google Scholar 

  15. Steigerwald RL (1987) A comparison of half-bridge resonant converter topologies. In: 1987 2nd IEEE applied power electronics conference and exposition, pp 135–144. https://doi.org/10.1109/APEC.1987.7067142

  16. Jin K, Ruan X (2006) Hybrid full-bridge three-level LLC resonant converter—a novel DC–DC converter suitable for fuel-cell power system. IEEE Trans Ind Electron 53(5):1492–1503. https://doi.org/10.1109/TIE.2006.882020

    Article  Google Scholar 

  17. Yilei G, Zhengyu L, Hang L, Qian Z, Huang G (2005) Three-level LLC series resonant DC/DC converter. IEEE Trans Power Electron 20(4):781–789. https://doi.org/10.1109/TPEL.2005.850921

    Article  Google Scholar 

  18. Yao Z, Lu S (2020) Voltage self-balance mechanism based on zero-voltage switching for three-level DC–DC converter. IEEE Trans Power Electron 35(10):10078–10087. https://doi.org/10.1109/TPEL.2020.2977881

    Article  Google Scholar 

  19. Wang H, Shang M, Khaligh A (2017) A PSFB-based integrated PEV onboard charger with extended ZVS range and zero duty cycle loss. IEEE Trans Ind Appl 53(1):585–595. https://doi.org/10.1109/TIA.2016.2615034

    Article  Google Scholar 

  20. Wang H, Li Z (2018) A PWM LLC type resonant converter adapted to wide output range in PEV charging applications. IEEE Trans Power Electron 33(5):3791–3801

    Article  Google Scholar 

  21. Suryawanshi HM et al (2018) Hybrid control of high-efficient resonant converter for renewable energy system. IEEE Trans Ind Inf 14(5):1835–1845. https://doi.org/10.1109/TII.2017.2756703

    Article  Google Scholar 

  22. Suryawanshi HM, Tarnekar SG (1998) Improvement of power factor using modified series-parallel resonant converter. Power Quality ’98, Hyderabad, India, pp 103–109. https://doi.org/10.1109/PQ.1998.710362

  23. Merlin Mary NJ, Sathyan S (2021) Design and analysis of three-level soft-switched resonant converter for EV battery charger. In: 2021 IEEE Green Technologies Conference (GreenTech), pp. 48–53. https://doi.org/10.1109/GreenTech48523.2021.00019

  24. Mohan N (2012) Power electronics: a first course. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Prime Minister’s Research Fellows (PMRF) scheme, Ministry of Human Resource Development, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Merlin Mary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlin Mary, N.J., Sathyan, S. Design and controller implementation of 3.3 kW bridgeless boost-fed three-level resonant converter for EV battery charging. Electr Eng 104, 1935–1949 (2022). https://doi.org/10.1007/s00202-021-01416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01416-0

Keywords

Navigation