Skip to main content

Advertisement

Log in

A high gain soft-switching active-clamped coupled-inductor-based converter for grid-tied photovoltaic applications

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Due to increased demand for electricity and to curtail large consumption of fossil fuels, researchers are more focused on renewable energy sources, particularly solar photovoltaic (PV). In general, grid-tied PV systems require a high voltage boosting stage, leading to reduced efficiency. A converter is proposed along with the high gain and soft-switching capabilities by using an active-clamped circuit to the coupled inductor for grid-tied PV system applications. In this circuit, high gain is achieved by incorporating switched capacitors (SCs) in conjunction with the coupled inductor and regenerative diodes. The SCs are connected in such a way that, they store the energy in parallel and deliver the energy in a series. By using the active-clamped circuit, the switching overvoltages are diminished and also improvement in converter efficiency with the zero-voltage switching (ZVS). The operating principle of the converter and its design procedure is presented. Finally, to validate the theoretical analysis, the obtained experimental results from a laboratory prototype of 500 W rated at 100 kHz with the variation of input voltage, 36–48 V, and output voltage 400 V are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li W, Lv X, Deng Y et al (2009) A review of non-isolated high step-up DC/DC converters in renewable energy applications. Conf Proc IEEE Appl Power Electron Conf Expo APEC 2:364–369. https://doi.org/10.1109/APEC.2009.4802683

    Article  Google Scholar 

  2. Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19:1184–1194. https://doi.org/10.1109/TPEL.2004.833453

    Article  Google Scholar 

  3. Faldu KS, Kulkarni PS (2020) Maximization of the output power from photovoltaic array under partial shading conditions. In: Conf Proc—IEEE international students conference on electrical electronics and computer science (SCEECS), pp 1–6. https://doi.org/10.1109/sceecs48394.2020.136

  4. Hu B, Sathiakumar S (2012) Interleaving technique of series connected module-integrated converters for PV systems: novel approach and system analysis. IEEE Int Symp Ind Electron. https://doi.org/10.1109/ISIE.2012.6237362

    Article  Google Scholar 

  5. Edwin FF, Xiao W, Khadkikar V (2014) Dynamic modeling and control of interleaved flyback module-integrated converter for PV power applications. IEEE Trans Ind Electron 61:1377–1388. https://doi.org/10.1109/TIE.2013.2258309

    Article  Google Scholar 

  6. Petrone G, Ramos-Paja CA (2011) Modeling of photovoltaic fields in mismatched conditions for energy yield evaluations. Electr Power Syst Res 81:1003–1013. https://doi.org/10.1016/j.epsr.2010.12.008

    Article  Google Scholar 

  7. Hasan R, Mekhilef S (2017) Highly efficient flyback microinverter for grid-connected rooftop PV system. Sol Energy 146:511–522. https://doi.org/10.1016/j.solener.2017.03.015

    Article  Google Scholar 

  8. Liang TJ, Lee JH, Chen SM et al (2013) Novel isolated high-step-up DC–DC converter with voltage lift. IEEE Trans Ind Electron 60:1483–1491. https://doi.org/10.1109/TIE.2011.2177789

    Article  Google Scholar 

  9. Spiazzi G, Mattavelli P, Costabeber A (2011) High step-up ratio flyback converter with active clamp and voltage multiplier. IEEE Trans Power Electron 26:3205–3214. https://doi.org/10.1109/TPEL.2011.2134871

    Article  Google Scholar 

  10. Ahmed NA, Madouh JY (2018) High-frequency full-bridge isolated DC–DC converter for fuel cell power generation systems. Electr Eng 100:239–251. https://doi.org/10.1007/s00202-016-0499-6

    Article  Google Scholar 

  11. Tang Y, Fu D, Wang T, Xu Z (2015) Hybrid switched-inductor converters for high step-up conversion. IEEE Trans Ind Electron 62:1480–1490. https://doi.org/10.1109/TIE.2014.2364797

    Article  Google Scholar 

  12. Prudente M, Pfitscher LL, Emmendoerfer G et al (2008) Voltage multiplier cells applied to non-isolated DC–DC converters. IEEE Trans Power Electron 23:871–887. https://doi.org/10.1109/TPEL.2007.915762

    Article  Google Scholar 

  13. Abutbul O, Gherlitz A, Berkovich Y, Ioinovici A (2003) Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit. IEEE Trans Circuits Syst I Fundam Theory Appl 50:1098–1102. https://doi.org/10.1109/TCSI.2003.815206

    Article  Google Scholar 

  14. Tang Y, Wang T, Fu D (2015) Multicell switched-inductor/switched-capacitor combined active-network converters. IEEE Trans Power Electron 30:2063–2072. https://doi.org/10.1109/TPEL.2014.2325052

    Article  Google Scholar 

  15. Salvador MA, Lazzarin TB, Coelho RF (2018) High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans Ind Electron 65:5644–5654. https://doi.org/10.1109/TIE.2017.2782239

    Article  Google Scholar 

  16. He L, Zheng Z (2017) High step-up DC–DC converter with switched-capacitor and its zero-voltage switching realisation. IET Power Electron 10:630–636. https://doi.org/10.1049/iet-pel.2016.0389

    Article  Google Scholar 

  17. Zhao Q, Lee FC (2003) High-efficiency, high step-up DC-DC converters. IEEE Trans Power Electron 18(1):65–73. https://doi.org/10.1109/TPEL.2002.807188

    Article  Google Scholar 

  18. Berkovich Y, Axelrod B (2011) Switched-coupled inductor cell for DC–DC converters with very large conversion ratio. IET Power Electron 4:309–315. https://doi.org/10.1049/iet-pel.2009.0341

    Article  Google Scholar 

  19. Sahin Y, Ting NS (2018) Soft switching passive snubber cell for family of PWM DC–DC converters. Electr Eng 100:1785–1796. https://doi.org/10.1007/s00202-017-0655-7

    Article  Google Scholar 

  20. Das M, Agarwal V (2016) Design and analysis of a high-efficiency DC–DC converter with soft switching capability for renewable energy applications requiring high voltage gain. IEEE Trans Ind Electron 63:2936–2944. https://doi.org/10.1109/TIE.2016.2515565

    Article  Google Scholar 

  21. Gules R, Dos Santos WM, Dos Reis FA et al (2014) A modified SEPIC converter with high static gain for renewable applications. IEEE Trans Power Electron 29:5860–5871. https://doi.org/10.1109/TPEL.2013.2296053

    Article  Google Scholar 

  22. Wu TF, Lai YS, Hung JC, Chen YM (2008) Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans Ind Electron 55:154–162. https://doi.org/10.1109/TIE.2007.903925

    Article  Google Scholar 

  23. Yu W, Hutchens C, Lai JS et al (2009) High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications. IEEE Energy Convers Congr Expo ECCE 2009:3895–3900. https://doi.org/10.1109/ECCE.2009.5316154

    Article  Google Scholar 

  24. Changchien SK, Liang TJ, Chen JF, Yang LS (2010) Step-up DC–DC converter by coupled inductor and voltage-lift technique. IET Power Electron 3:369–378. https://doi.org/10.1049/iet-pel.2009.0089

    Article  Google Scholar 

  25. Nayanasiri DR, Ambagahawaththa TS (2017) Boost converter based on coupled inductor and voltage lift cell. In: IEEE region 10 annual international conference, proceedings/TENCON, pp 291–296. https://doi.org/10.1109/TENCON.2017.8227878

  26. Hassan W, Lu D, Xiao W (2019) Optimal analysis and design of DC–DC converter to achieve high voltage conversion gain and high efficiency for renewable energy systems. In: IEEE international symposium on industrial electronics, June 2018, pp 439–444. https://doi.org/10.1109/ISIE.2018.8433857

  27. Bonab HAF, Banaei MR, Kalantari NT (2018) A voltage multiplier based high voltage gain transformerless buck-boost DC–DC converter. J Circuits Syst Comput 27:1–21. https://doi.org/10.1142/S0218126618501888

    Article  Google Scholar 

  28. Gao W, Zhang Y, Lv X, Lou QA (2017) Non-isolated high step-up soft switching DC/DC converter with low voltage stress. IET Power Electron 10:120–128. https://doi.org/10.1049/iet-pel.2016.0323

    Article  Google Scholar 

  29. Spiazzi G, Biadene D, Marconi S, Bevilacqua A (2019) Nonisolated high-step-up DC–DC converter with minimum switch voltage stress. IEEE Trans Power Electron 34:1470–1480. https://doi.org/10.1109/TPEL.2018.2833500

    Article  Google Scholar 

  30. Haghshenas G, Mehdi Mirtalaei SM, Mordmand H, Shahgholian G (2019) High step-up boost-fly-back converter with soft switching for photovoltaic applications. J Circuits Syst Comput. https://doi.org/10.1142/S0218126619500142

    Article  Google Scholar 

  31. Kokkonda K, Kulkarni PS (2019) Soft-switching high step-up active clamp coupled inductor-based converter for grid-tied solar photovoltaic applications. In: 2019 IEEE 5th International Conference for Convergence in Technology, 2019 1–6. https://doi.org/10.1109/I2CT45611.2019.9033809

  32. Boujelben N, Masmoudi F, Djemel M, Derbel N (2019) Modeling and comparison of boost converter with cascaded boost converters. Green Energy Technol. https://doi.org/10.1007/978-981-13-1945-7_4

    Article  Google Scholar 

  33. Neto RMF, Tofoli FL (2018) A soft switching ZCS–ZVS double two-switch forward converter. Electr Eng 100:1229–1241. https://doi.org/10.1007/s00202-017-0581-8

    Article  Google Scholar 

  34. Pourfarzad H, Saremi M, Jalilzadeh T (2020) An extended high-voltage-gain DC–DC converter with reduced voltage stress on switches/diodes. Electr Eng 102:2435–2452. https://doi.org/10.1007/s00202-020-01040-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karun Kokkonda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkonda, K., Kulkarni, P.S. A high gain soft-switching active-clamped coupled-inductor-based converter for grid-tied photovoltaic applications. Electr Eng 103, 2783–2797 (2021). https://doi.org/10.1007/s00202-021-01250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01250-4

Keywords

Navigation