Skip to main content

Advertisement

Log in

A generalized single-phase cascaded multilevel inverter with reduced switch count

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The paper presents a new generalized topology-based single-phase cascaded multilevel inverter with reduced power electronic switches, thereby reducing the driver circuits. A new basic unit is proposed in this paper. In order to generate required voltages at the output, an H-bridge is added in conjunction with the basic unit as the unit provides only positive voltage levels. Owing to the merits possessed by cascaded multilevel inverter such as reduction in switch count, driver circuits, low stresses in voltage and their power quality being high, a basic unit is developed. A comparison between the existing topologies and the proposed topology is presented. The developed cascaded 9-level multilevel inverter topology is validated with both simulations and experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

references

  1. Prabaharan N, Palanisamy K (2017) Analysis of cascaded H-bridge multilevel inverter configuration with double level circuit. Power Electron IET 10(9):1023–1033

    Article  Google Scholar 

  2. Babaei E, Alilu S, Laali S (2014) A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans Ind Electron 61(8):932–3939

    Article  Google Scholar 

  3. Jain S, Sonti V (2017) A highly efficient and reliable inverter configuration based cascaded multilevel inverter for PV systems. IEEE Trans Ind Electron 64(4):2865–2875

    Article  Google Scholar 

  4. Sonti V, Jain S, Bhattacharya S (2017) Analysis of the modulation strategy for the minimization of the leakage current in the PV grid-connected cascaded multilevel inverter. IEEE Trans Power Electron 32(2):1156–1169

    Article  Google Scholar 

  5. Babaei E, Sheermohammadzadeh S (2014) Hybrid multilevel inverter using switched-capacitor units. IEEE Trans Ind Electron 61(9):4614–4621

    Article  Google Scholar 

  6. Sonti V, Dhara S, Kukade P, Jain S, Agarwal V (2019) “Analysis for the minimization of leakage and common mode currents in cascaded half-bridge PV fed multilevel inverter.” IEEE J Emerg Sel Topics Power Electron 7(4):2443–2452

    Article  Google Scholar 

  7. Shi S, Wang X, Zheng S, Zhang Y, Lu D (2018) A new diode-clamped multilevel inverter with balance voltages of DC capacitors. IEEE Trans Energy Conversion 33(4):2220–2228

    Article  Google Scholar 

  8. Castillo R, Diong B, Biggers P (2018) Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter with capacitor voltage balancing. IET Power Electron 11(4):700–707

    Article  Google Scholar 

  9. Zamiri E, Vosoughi N, Hosseini SH, Barzegarkhoo R, Sabahi M (2016) A new cascaded switched-capacitor multilevel inverter based on improved series-parallel conversion with less number of components. IEEE Trans Ind Electron 63(6):3582–3594

    Article  Google Scholar 

  10. Maheshwari R, Busquets-Monge S, Nicolas-Apruzzese J (2016) A novel approach to generate effective carrier-based pulsewidth modulation strategies for diode-clamped multilevel DC–AC converters. IEEE Trans Ind Electron 63(11):7243–7252

    Article  Google Scholar 

  11. Ikechukwu Odeh Charles, Emeka S, Olorunfemi Ojo Obe (2016) “Topology for cascaded multilevel inverter.” IET Power Electron 9(5):921–929

    Article  Google Scholar 

  12. Najmi ES, Ajami A (2016) Modular symmetric and asymmetric reduced count switch multilevel current source inverter. IET Power Electron 9(1):51–61

    Article  Google Scholar 

  13. Babaei E, Laali S, Bayat Z (2015) A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches. IEEE Trans Ind Electron 62(2):922–929

    Article  Google Scholar 

  14. Mariéthoz S (2014) Design and control of high-performance modular hybrid asymmetrical cascade multilevel inverters. IEEE Trans Ind Appl 50(6):4018–4027

    Article  Google Scholar 

  15. Kangarlu MF, Babaei E, Laali S (2012) Symmetric multilevel inverter with reduced components based on non-insulated DC voltage sources. IET Power Electron 5(5):571–581

    Article  Google Scholar 

  16. FarhadiKangarlu M, Babaei E (2013) A generalized cascaded multilevel inverter using series connection of sub-multilevel inverters. IEEE Trans Power Electron 28(2):625–636

    Article  Google Scholar 

  17. Zhang X, Spencer JW (2012) Study of multisampled multilevel inverters to improve control performance. IEEE Trans Power Electron 27(11):4409–4416

    Article  Google Scholar 

  18. Lee J, Sim H, Kim J, Lee K (2018) Combination analysis and switching method of a cascaded H-bridge multilevel inverter based on transformers with the different turns ratio for increasing the voltage level. IEEE Trans Ind Electron 65(6):4454–4465

    Article  Google Scholar 

  19. Sing-Lee Sze, Sidorov Michail, Rumzi Nik Idris Nik, En-Heng Yeh (2018) A symmetrical cascaded compact-module multilevel inverter (CCM-MLI) with pulsewidth modulation. IEEE Trans Ind Electron 65(6):4631–4639

    Article  Google Scholar 

  20. NazemiBabadi A, Salari O, Mojibian MJ, Bina MT (2018) Modified multilevel inverters with reduced structures based on packed U-cell. IEEE J Emerg Sel Top Power Electron 6(2):874–887

    Article  Google Scholar 

  21. Gao Z, Lu Q (2019) A hybrid cascaded multilevel converter based on three-level cells for battery energy management applied in electric vehicles. IEEE Trans Power Electron 34(8):7326–7349

    Article  Google Scholar 

  22. Zheng Z, Wang K, Xu L, Li Y (2014) A hybrid cascaded multilevel converter for battery energy management applied in electric vehicles. IEEE Trans Power Electron 29(7):3537–3546

    Article  Google Scholar 

  23. Lee SS, Chu B, Idris NRN, Goh HH, Heng YE (2016) Switched-battery boost-multilevel Inverter with GA optimized SHEPWM for standalone application. IEEE Trans Ind Electron 63(4):2133–2142

    Article  Google Scholar 

  24. Laali S, Abbaszades K, and Lesani H (2010) A new algorithm to determine the magnitudes of DC voltage sources in asymmetrical cascaded multilevel converters capable of using charge balance control methods. In: Proceedings of ICEMS, Incheon, Korea, pp. 56–61

  25. Clemente S (1995) A simple tool for the selection of IGBTs for motor drives and UPSs. In: Proceedings of 10th Annual Applied Power Electronics Conference Exposition. pp. 755–764

  26. Kishor Thakre, Kanungo Barada Mohanty, Ashwini Ku Nayak, Rabi Narayan Mishra (2017) Design and implementation of symmetric and asymmetric structure for multilevel inverter. Power Electronics Conference (NPEC) 2017 National 31–36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Rahul Tupakula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

fs = 5000 Hz, ma = 0.8, IRF640N-10 units, driver circuits-9, h = 0.0040, k = 1.6783, m = 0.0181, n = 1.3444, gamma function of (k + 1)/2 = 0.892, (k/2 + 1) = 0.942, (n + 1)/2 = 0.926, (n/2 + 1) = 0.903, kgon = 0.0011, kgoff = 0.00047, R = 100 Ω, L = 10 mH, Vds = 50 V, Vtest = 40 V, Rds = 0.15 Ω.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tupakula, R.R. A generalized single-phase cascaded multilevel inverter with reduced switch count. Electr Eng 103, 1115–1125 (2021). https://doi.org/10.1007/s00202-020-01141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01141-0

Keywords

Navigation