Skip to main content
Log in

Design and application of PEM fuel cell-based cascade boost converter

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents average sliding current controller (ASCC) for the proton membrane exchange fuel cell (PEMFC)-based DC–DC cascade boost converter under different source and load conditions. PEMFC which has variable voltage and current can be used in a lot of applications with a wide operating range in low temperatures. However, as the PEMFC produces low nonlinear voltage, this lower nonlinear voltage value needs to be increased as a linear voltage with an appropriate power electronics converter. Therefore, this paper proposes DC–DC cascade boost converter which has a higher voltage gain for PEMFC stack. First, a classical PI controller was applied to regulate the output voltage. Then, the current of the PEMFC-based DC–DC cascade boost converter was controlled via ASCC by using output of the voltage controller. After analyzing the dynamic model of the PEMFC-based DC–DC cascade boost converter via MATLAB/Simulink program, the experimental results of the controlled PEMFC-based DC–DC cascade boost converter are observed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yilmaz EN, Aksoz A, Saygin A (2018) Design of an off-grid model of micro-smart grid connection of an asynchronous motor fed with LUO converter. Electr Eng 100:2659–2666. https://doi.org/10.1007/s00202-018-0734-4

    Article  Google Scholar 

  2. Diaz-Saldiema L, Leyva-Ramos J, Langarica-Cordoba D, Morales-Saldana JA (2017) Control strategy of switching regulators for fuel-cell power applications. IET Renew Power Gener 11:799–805. https://doi.org/10.1049/iet-rpg.2016.0717

    Article  Google Scholar 

  3. Shen J-M, Joul H-L, Wu J-C (2012) Transformerless three-port gridconnected power converter for distribution power generation system with dual renewable energy sources. IET Power Electron 5:501–509. https://doi.org/10.1049/iet-pel.2011.0165

    Article  Google Scholar 

  4. Uzunoglu M, Onar OC, Alam MS (2009) Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone application. Renew Energy 34:509–520. https://doi.org/10.1016/j.renene.2008.06.009

    Article  Google Scholar 

  5. Bizon N (2010) Development of a fuel cell stack macro-model for inverter current ripple evaluation. Revue Roumaine des Sciences Techniques series Électrotechnique et Énergetique. 5:405–415

    Google Scholar 

  6. Benaissa A, Raghi B, Benkhoris MF, Zellouma L (2017) An investigation on combined operation of five-level shunt active power filter with PEM fuel cell. Electr Eng 99:649–663. https://doi.org/10.1007/s00202-016-0394-1

    Article  Google Scholar 

  7. Li Q, Chen W, Liu Z et al (2015) Active control strategy based on vector proportion integration controller for proton exchange membrane fuel cell grid-connected system. IET Renew Power Gener 9:991–999. https://doi.org/10.1049/iet-rpg.2014.0245

    Article  Google Scholar 

  8. Kirubakaran A, Jain S, Nema RK (2009) The PEM fuel cell system with DC–DC boost converter: design, modeling and simulation. Int J Recent Trends Eng 1:157–161

    Google Scholar 

  9. Mert SO, Dincer I, Ozcelik Z (2012) Performance investigation of a transportation PEM fuel cell system. Int J Hydrogen Energy 37:623–633. https://doi.org/10.1016/j.ijhydene.2011.09.021

    Article  Google Scholar 

  10. Garrigos A, Manzanes FS (2015) Interleaved multi-phase and multi-switch boost converter for fuel cell applications. Int J Hydrogen Energy 40:8419–8432. https://doi.org/10.1016/j.ijhydene.2015.04.132

    Article  Google Scholar 

  11. Shair FM, Babaei E, Sabahi M, Laali S (2015) A new DC–DC converter based on voltage lift technique. Int Trans Electr Eng Syst 26:1260–1286. https://doi.org/10.1002/etep.2133

    Article  Google Scholar 

  12. Matsuo H, Harada K (1976) The cascade connection of switching regulators. IEEE Trans Ind Appl 12:192–198. https://doi.org/10.1109/TIA.1976.349401

    Article  Google Scholar 

  13. Hajizadeh A, Golkar MA, Norum L (2011) Robust control of hybrid fuel cell/energy storage distributed power generation system in weak grid under balanced and unbalanced voltage sag. Int Trans Electr Energy Syst 21:522–540. https://doi.org/10.1002/etep.459

    Article  Google Scholar 

  14. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440. https://doi.org/10.1016/j.rser.2009.04.004

    Article  Google Scholar 

  15. Mattavalli P, Rossetto L, Spiazzi G (1997) Small-signal analysis of DC–DC converters with sliding mode control. IEEE Trans Power Electron 12:96–102. https://doi.org/10.1109/63.554174

    Article  Google Scholar 

  16. Wang MH, Huang M-L, Jiang W-J, Liou K-J (2016) Maximum power point tracking control method for proton exchange membrane fuel cell. IET Renew Power Gener 10:908–915. https://doi.org/10.1049/iet-rpg.2015.0205

    Article  Google Scholar 

  17. Xu H, Kong L, Wen X (2004) Fuel cell power system and high-power DC–DC converter. IEEE Trans Power Electron 19:1250–1255. https://doi.org/10.1109/TPEL.2004.833440

    Article  Google Scholar 

  18. Ahmed NA, Al-Othman AK, AlRashidi MR (2011) Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation. Electr Power Syst Res 81:1096–1106. https://doi.org/10.1016/j.epsr.2010.12.015

    Article  Google Scholar 

  19. Genc N, Koc Y (2017) Experimental verification of an improved soft-switching cascadeboost converter. Electr Power Syst Res 149:1–9. https://doi.org/10.1016/j.epsr.2017.04.015

    Article  Google Scholar 

  20. Sayed K, Mazem AB, Ahmed A, Ahmed M (2012) New high voltage gain dual-boost DC–DC converter for photovoltaic power systems. Electric Power Compon Syst 40:711–728. https://doi.org/10.1080/15325008.2012.658596

    Article  Google Scholar 

  21. Saldana JAM, Quirino RG, Ramos JL, Gutierrez EEC, Lopez MGO (2006) Modeling and control of a cascade boost converter with a single switch. In: IECON 2006 32nd annual conference on IEEE industrial electronics, pp 591–596. https://doi.org/10.1109/iecon.2006.347554

  22. Tan SC, Lai YM, Tse CK, Salamero LM, Wue CK (2007) A fast-response sliding-mode controller for boost-type converters with a wide range of operating conditions. IEEE Trans Ind Electron 54:3276–3286. https://doi.org/10.1109/TIE.2007.905969

    Article  Google Scholar 

  23. Karaarslan A, Iskender I (2012) Average sliding control method applied on power factor correction converter for decreasing input current total harmonic distortion using digital signal processor. IET Power Electron 5:617–626. https://doi.org/10.1049/iet-pel.2011.0348

    Article  Google Scholar 

  24. Haugen F, Lie B (2013) Relaxed Ziegler–Nichols closed loop tuning of PI controllers. Model Identif Control 34:83–97. https://doi.org/10.4173/mic.2013.2.4

    Article  Google Scholar 

  25. Vagati A, Pastorelli M, Franceschini G, Petrache SC (1998) Design of low-torque-ripple synchronous reluctance motors. IEEE Trans Ind Appl 34:758–765. https://doi.org/10.1109/28.703969

    Article  Google Scholar 

  26. Genc N, Iskender I (2011) Steady state analysis of a novel ZVT interleaved boost converter. Int J Circuit Theory Appl 39:1007–1021. https://doi.org/10.1002/cta.683

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support of this research. This research is supported by the TUBITAK with Project No: EEEAG-115E419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naci Genc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocaarslan, I., Kart, S., Genc, N. et al. Design and application of PEM fuel cell-based cascade boost converter. Electr Eng 101, 1323–1332 (2019). https://doi.org/10.1007/s00202-019-00871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00871-0

Keywords

Navigation