Skip to main content

Advertisement

Log in

Control and analysis of bidirectional interleaved hybrid converter with coupled inductors for electric vehicle applications

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a novel bidirectional interleaved hybrid converter which uses coupled inductors (CIs) for battery electric vehicles (BEVs) in order to optimize the performance of the power train. In this paper, a hybrid converter is proposed and designed to realize the integration of the DC/DC converter, and DC/AC inverter together in the BEVs power train with high performance in any operating mode, acting as a backup generator to supply emergency power directly to home. The proposed hybrid converter can improve the system cost, volume, and increase efficiency and reliability. Here, interleaving structure is used to increase power rating, reduce the input current ripple, output voltage ripple, power loss, and increase efficiency. The performance of the proposed converter is improved by using CIs of energy storage inductors. This integrated magnetic design structure reduces the size and improves the converter performance, both steady state and transient. A detailed study of the operating principle and design considerations is presented. In addition, low electromagnetic interference and low stress in the power switching devices are expected. The proposed topology and its control strategy are designed and analyzed using MATLAB/Simulink. Finally, the proposed topology is experimentally validated with results experimental work obtained from the prototype that has been built and integrated into our lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Chan CC, Bouscayrol A, Chen K (2010) Electric, hybrid, and fuel-cell vehicles: architectures and modeling. IEEE Trans Veh Technol 59(2):589–598

    Article  Google Scholar 

  2. Chan CC (2007) The state of the art of electric and hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718

    Article  Google Scholar 

  3. Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Trans Power Electron 21(3):567–577

    Article  Google Scholar 

  4. Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Electron 55(6):2237–2245

    Article  Google Scholar 

  5. Raghavan SS, Onar OC, Khaligh A (2010) Power electronic interfaces for future plug-in transportation systems. IEEE Power Electron Soc Newslett 24(3):23–26

    Google Scholar 

  6. Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional AC–DC and DC–DC converter for plug-in hybrid electric vehicles. IEEE Trans Veh Technol 58(8):3970–3980

    Article  Google Scholar 

  7. Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles. IEEE Trans Power Electron 27(4):2085–2103

    Article  Google Scholar 

  8. Kramer W, Chakraborty S, Kroposki B, Thomas H (2008) Advanced power electronics interfaces for distributed energy systems, Part 1: Systems and topologies. National Renewable Energy Lab., Golden, CO, USA, Tech. Rep. F4, 2008

  9. Hegazy O, Van Mierlo J, Lataire P (2011) Control and analysis of an integrated bidirectional DC/AC and DC/DC converters for plug-in hybrid electric vehicle applications. J Power Electron 11(4):408–417

    Article  Google Scholar 

  10. Hegazy O, Van Mierlo J, Lataire P (2011) Analysis, control, and comparison of DC/DC boost converter topologies for fuel cell hybrid electric vehicle applications. Presented at the IEEE Eur. Conf. Power Electron. Appl., Birmingham, U.K., Aug. 30–Sep. 1, 2011

  11. Kim S, Williamson SS (2010) Modeling, design, and control of a fuel cell/battery/ultra-capacitor electric vehicle energy storage system. Presented at the vehicle power propulsion conference, Lille, France

  12. Xu H, Wen X, Kong L (2004) Dual-phase dc–dc converter in fuel cell electric vehicles. In: 9th IEEE international power electronics congress

  13. Kazimierczuk MK (2008) Pulse-width modulated Dc–Dc power converters. Wiley, Hoboken

    Book  Google Scholar 

  14. Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of semiconductor conference (CAS 2010); 2010. pp 483–486

  15. Biel D, Guinjoan F, Fossas E, Chavarria J (2004) Sliding mode control design of a boost buck switching converter for AC signal generation. IEEE Trans Circuits Syst I Regul Pap 51:1539–1551

    Article  Google Scholar 

  16. Florescu A, Vasile A, Radoi C, Stoichescu DA (2010) Z-source inverter for fuel cell vehicles. IEEE 16th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania, 23–26 Sept 2010, pp 219–222

  17. Miaosen S (2007) Z-source inverter design, analysis, and its application in fuel cell vehicles. Ph.D. dissertation, Michigan State University, East Lansing, USA

  18. Nguyen M-K, Lim Y-C, Cho G-B (2011) Switched inductor quasi-Z-source inverter. IEEE Trans Power Electron 26(11):3183–3191

    Article  Google Scholar 

  19. Shen M, Joseph A, Wang J, Peng FZ, Adams DJ (2007) Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans Power Electron 22:1453–1463

    Article  Google Scholar 

  20. Peng FZ, Shen M, Holland K (2007) Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans Power Electron 22:1054–1061

    Article  Google Scholar 

  21. Peng FZ (2003) Z-source inverter. Ind Appl, IEEE Trans 39:504–510

    Article  Google Scholar 

  22. Sanchis P, Ursæa A, Gubía E, Marroyo L (2005) Boost DC AC inverter: a new control strategy. IEEE Trans Power Electron 20:343–353

    Article  Google Scholar 

  23. Abeywardana DBW, Hredzak B, Agelidis VG (2015) Single-phase grid-connected LiFePO4 battery-supercapacitor hybrid energy storage system with interleaved boost inverter. IEEE Trans Power Electron 30:5591–5604

    Article  Google Scholar 

  24. Knight A, Ewanchuk J, Salmon J (2008) Coupled three-phase inductors for interleaved inverter switching. IEEE Trans Magn 44(11):4119–4122

    Article  Google Scholar 

  25. Salmon J, Ewanchuk J, Knight A (2009) PWM inverters using split-wound coupled inductors. IEEE Trans Ind Appl 45(6):2001–2009

    Article  Google Scholar 

  26. Mahfouz H (205) Control techniques for DC–DC converters with improved performance. Thesis M.Sc., Sohag University, 2015

  27. Witulski AF (1995) Introduction to modeling of transformers and coupled inductors. IEEE Trans Power Electron 10(3):349–357

    Article  Google Scholar 

  28. Lee P-W, Lee Y-S, Cheng DKW, Liu X-C (2000) Steady-state analysis of an interleaved boost converter with coupled inductors. IEEE Trans Ind Electron 47(4):787–795

    Article  Google Scholar 

  29. Wen W, Lee Y (2004) A two-channel interleaved boost converter with reduced core loss and copper loss. In: Proceedings of IEEE power electronics specialists conference, pp 1003–1009

  30. Sayed K, El-Zohri E, Naguib F, Mahfouz H (2015) Performance evaluations of interleaved ZCS boost DC–DC converters using quasi-resonant switch blocks for PV interface. IOSR J Electr Electron Eng (IOSR-JEEE) 10(4):105–113

    Google Scholar 

  31. Saleeb H, Sayed K, Kassem A, Mostafa R (2018) Power management strategy for battery electric vehicles. IET Electr Syst Transp 9(2):65–74

    Article  Google Scholar 

  32. Sayed K, El-Zohri EH, Mahfouz H (2017) Analysis and design for interleaved ZCS buck DC–DC converter with low switching losses. Int J Power Electron 8(3):210–231

    Article  Google Scholar 

  33. Shum KE, Ashley CR (1996) A new full shunt switching unit for solar array using coupled-inductor boost converter. In: Proceedings of the 31st intersociety energy conversion engineering conference, IECEC 96., 11–16 Aug. vol 1, pp 617–622

  34. Veerachary M, Senjyu T, Uezato K (2003) Maximum power point tracking of coupled inductor interleaved boost converter supplied PV system. Proc IEE Electr Power Appl 150(1):71–80

    Article  MATH  Google Scholar 

  35. Zumel P, Garcia O, Cobos JA, Uceda J (2003) Magnetic integration for interleaved converters. In: Eighteenth annual IEEE applied power electronics conference and exposition, APEC ‘03, volume 2, 9–13 Feb. vol 2, pp 143–1149

  36. Dahono PA, Riyadi S, Mudawari A, Haroen Y (1999) Output ripple analysis of multiphase DC–DC converters. In: Proceedings of the IEEE 1999 international conference on power electronics and drive systems, PEDS ‘99. volume 2, 27–29 July 1999. vol 2, pp 626–631

  37. Karimi-Ghartemani Masoud (2014) Linear and pseudolinear enhanced phased-locked loop (EPLL) structures. IEEE Trans Ind Electron 61(3):1464–1474

    Article  Google Scholar 

  38. Ellabban O, Hegazy O, Van Mierlo J, Lataire P (2010) Dual loop digital control design and implementation of a DSP based high power boost converter in fuel cell electric vehicle. In: IEEE OPTIM

  39. Wang Y, Yang L, Han F, Tu S, Zhang W (2017) A study of two multi-element resonant DC–DC topologies with loss distribution analyses. Energies 10:1400

    Article  Google Scholar 

  40. Ivanovic Z, Blanusa B, Knezic M (2011) Power loss model for efficiency improvement of the boost converter. In: Proceedings of the XXIII international symposium on information, communication and automation technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 27–29 October 2011

  41. Graovac D, Pürschel M, Kiep A (2006) MOSFET power losses calculation using the data-sheet parameters; application note; Infineon technologies AG: Neubiberg, Germany, 2006

  42. Khersonsky Y, Robinson M, Gutierrez D (xxxx) The HEXFRED™ Ultrafast Diode in Power Switching Circuits; Application Note; International Rectifier: El Segundo, CA, USA

  43. Sayed Khairy, Abdel-salam Mazen, Ahmed Adel, Ahmed Mahmoud (2012) A new high voltage gain dual boost DC–DC converter for pv power systems. J Electr Power Comp Syst 40(7):711–728

    Article  Google Scholar 

  44. Barlow TJ, Latham S, McCrae IS et al (2009) Reference book of vehicle driving cycles for use in the measurements of road vehicles emissions. Technical Report, TRL Limited

    Google Scholar 

  45. Prasad BS, Jain S, Agarwal V (2008) Universal single-stage grid-connected inverter. IEEE Trans Energy Convers 23:128–137

    Article  Google Scholar 

  46. Sampaio L, De Brito M, Junior L, de Ae Melo G, Canesin C (2011) Single-phase current source-boost inverter for renewable energy sources. In: Proceedings of IEEE international symposium on industrial electronics (ISIE); pp 1118–1123

  47. Kaviani AK, Mirafzal B. A switching pattern for single-phase single-stage current source boost inverter. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012; 2012. pp 2066–2071

  48. Adda R, Ray O, Mishra S, Joshi A. DSP based PWM control of switched boost inverter for DC nano grid applications. In: Proceedings of 38th annual conference on IEEE industrial electronics society: IEEE; IECon; 2012. pp 5285–5290

  49. Ravindranath A, Mishra SK, Joshi A (2013) Analysis and PWM control of switched boost inverter. IEEE Trans Ind Electron 60:5593–5602

    Article  Google Scholar 

  50. Jia Y, Zhang S, Liu L, Wang S, Qie C (2016) Improved switching boost inverter. In: Proceedings of 11th conference on industrial electronics and applications (ICIEA), 2016 IEEE; 2016. pp 2468–71

  51. Garcia LS, De Freitas LC, Buiatti GM, Coelho EA, Farias VJ, Freitas LC. Modeling and control of a single-stage current source inverter with amplified sinusoidal output voltage. In: Proceedings of IEEE twenty-seventh annual applied power electronics conference and exposition (APEC), 2012: IEEE; 2012. pp 2024–31

  52. Garcia LS, de Freitas LC, Avelar HJ, Costa NM, Junior JBV, Coelho EA, et al. Single-stage fuel-cell inverter with new control strategy. In: Proceedings of vehicle power and propulsion conference (VPPC); 2010. p. 1–6

  53. Babaei E, Asl ES, Babayi MH (2016) Steady-state and small-signal analysis of high voltage gain half-bridge switched boost inverter. IEEE Trans Ind Electron 63:3546–3553

    Article  Google Scholar 

  54. Shen M, Joseph A, Huang Y, Peng FZ, Qian Z. Design and development of a 50 kW Z-source inverter for fuel cell vehicles. In: Proceedings of CES/IEEE 5th international power electronics and motion control conference, 2006 IPEMC 2006: IEEE; 2006. pp 1–5

  55. Florescu A, Stocklosa O, Teodorescu M, Radoi C, Stoichescu D, Rosu S. The advantages, limitations, and disadvantages of Z-source inverter. In: Proceedings of IEEE international semiconductor conference (CAS), IEEE; 2010. pp 483–486

  56. Suresh L, Kumar GN, Sudarsan M, Rajesh K (2013) Simulation of Z-source inverter using maximum boost control PWM technique. Int J Simul Syst 7:49–59

    Google Scholar 

  57. Cortes D, Vázquez N, Alvarez-Gallegos J (2009) Dynamical sliding-mode control of the boost inverter. IEEE Trans Ind Electron 56:3467–3476

    Article  Google Scholar 

  58. Cáceres R, Barbi I (1995) A boost DC-AC converter: operation, analysis, control, and experimentation. In: Proceedings of the IEEE IECON 21st international conference on industrial electronics, control, and instrumentation; 1995. pp 546–51

  59. Caceres RO, Barbi I (1999) A boost DC-AC converter: analysis, design, and experimentation. IEEE Trans Power Electron 14:134–141

    Article  Google Scholar 

  60. Caceres RO, Garcia WM, Camacho OE (1998) A buck-boost DC-AC converter: operation, analysis, and control. In: Proceedings of VI IEEE international power electronics congress; 1998. pp 126–131

  61. Jang M, Ciobotaru M, Agelidis VG (2013) A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE Trans Power Electron 28:279–288

    Article  Google Scholar 

  62. Jang M, Agelidis VG (2011) A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage. IEEE Trans Power Electron 26:1568–1577

    Article  Google Scholar 

  63. Jang M, Agelidis VG (2010) Grid-interfaced fuel cell energy system based on a boost inverter with bi-directional back-up battery storage. In: Proceedings of IEEE energy conversion congress and exposition (ECCE); 2010. pp 4499–506

  64. Jang M, Ciobotaru M, Agelidis VG (2012) A single-stage fuel cell energy system based on a buck-boost inverter with a backup energy storage unit. IEEE Trans Power Electron 27:2825–2834

    Article  Google Scholar 

  65. Jang M, Ciobotaru M, Agelidis VG. A single-stage three-phase fuel cell system based on a boost inverter with a battery back-up unit. In: Proceedings of twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), IEEE; 2012. pp 2032–2037

  66. Danyali S, Hosseini SH, Gharehpetian GB (2014) New extendable single-stage multi-input DC–DC/AC boost converter. IEEE Trans Power Electron 29:775–788

    Article  Google Scholar 

  67. Danyali S, Mozaffari Niapour SAK, Hosseini SH, Gharehpetian GB, Sabahi M (2015) New single-stage single-phase three-input DC-AC boost converter for stand-alone hybrid PV/FC/UC systems. Electr Power Syst Res 127:1–12

    Article  Google Scholar 

  68. Tang Y, Yao W, Blaabjerg F. A dual-mode operated boost inverter and its control strategy for ripple current reduction in single-phase uninterruptible power supplies. In: Proceedings of 9th IEEE international conference on power electronics and ECCE Asia (ICPE-ECCE Asia); 2015. pp 2227–2234

  69. Moraka O, Barendse P, Khan MA (2016) Deadtime effect on the double loop control strategy for a boost inverter. IEEE Trans Ind Appl 53:319

    Article  Google Scholar 

  70. Wai R-J, Chen M-W, Liu Y-K (2015) Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans Ind Electron 62:5434–5445

    Article  Google Scholar 

  71. Wai R-J, Lin Y-F, Liu Y-K (2015) Design of adaptive fuzzy neural-network control for a single-stage boost inverter. IEEE Trans Power Electron 30:7282–7298

    Article  Google Scholar 

  72. Jha K, Mishra S, Joshi A (2015) High-quality sine wave generation using a differential boost inverter at higher operating frequency. IEEE Trans Ind Appl 51:373–384

    Article  Google Scholar 

  73. Abeywardana DBW, Hredzak B, Agelidis VG (2016) An input current feedback method to mitigate the DC-side low-frequency ripple current in a single-phase boost inverter. IEEE Trans Power Electron 31:4594–4603

    Article  Google Scholar 

  74. Abeywardana DBW, Hredzak B, Agelidis VG (2017) A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system. IEEE Trans Power Electron 32:668–680

    Article  Google Scholar 

  75. Caceres R, Barbi I (1996) Sliding mode controller for the boost inverter. In: Proceedings of IEEE international power electronics congress, 1996 CIEP’96. Mexico: IEEE; 1996. p. 247–52

  76. Almazan J, Vazquez N, Hernandez C, Alvarez J, Arau J. A comparison between the buck, boost, and buck-boost inverters. In: Proceedings of IEEE VII international power electronics congress, 2000 CIEP IEEE; 2000. pp 341–346

  77. Caceres R, Rojas R, Camacho O (2000) Robust P.I.D. control of a buck-boost DC-AC converter. In: Proceedings of twenty-second international telecommunications energy conference, INTELEC: IEEE; pp 180–185

  78. Vázquez N, Cortes D, Hernandez C, Alvarez J, Arau J, Alvarez J (2003) A new nonlinear control strategy for the boost inverter. In: Proceedings of IEEE 34th annual on power electronics specialist conference, 2003 PESC’03 2003; pp 1403–1407

  79. Liang T-J, Shyu J-L, Chen J-F. A novel DC/AC boost inverter. In: Proceedings of 37th intersociety energy conversion engineering conference, IECEC’02 2002: IEEE; 2004. pp 629–634

  80. Sanchis P, Ursúa A, Gubía E, Marroyo L (2005) Design and experimental operation of a control strategy for the buck-boost DC-AC inverter. IEE Proc-Electr Power Appl 152:660–668

    Article  Google Scholar 

  81. Akhter R, Hoque A. Analysis of a PWM Boost Inverter for solar home application. In: Proceedings of world academy of science, engineering, and technology; 2006. pp 212–216

  82. Zhao W, Lu D-C, Agelidis VG (2011) Current control of grid-connected boost inverter with zero steady-state error. Power Electron, IEEE Trans 26:2825–2834

    Article  Google Scholar 

  83. Jang M, Kim T, Agelidis VG. Design and implementation of a 200 kHz single-phase boost-inverter using silicon carbide semiconductors. In: 41st annual conference of the IEEE industrial electronics society, IECON 2015: IEEE; 2015. pp 002241–6

  84. Abeywardana DBW, Hredzak B, Agelidis VG (2016) A rule-based controller to mitigate DC-side second-order harmonic current in a single-phase boost inverter. IEEE Trans Power Electron 31:1665–1679

    Article  Google Scholar 

  85. Flores-Bahamonde F, Valderrama-Blavi H, Bosque-Moncusi JM, García G, Martínez-Salamero L (2016) Using the sliding-mode control approach for analysis and design of the boost inverter. IET Power Electron 9:1625–1634

    Article  Google Scholar 

  86. Arunkumar G, Elangovan D, Patra JK, Tania H. A differential unipolar trailing edge modulated boost inverter for solar applications. In: Proceedings of the international conference on the computation of power, energy information, and communication (ICCPEIC), 2016: IEEE; 2016. pp 468–471

  87. Purnama I, Chi P-C, Hsieh Y-C, Lin J-Y, Chiu H-J (2016) One cycle controlled grid-tied differential boost inverter. IET Power Electron 9:2216–2222

    Article  Google Scholar 

  88. Zhu G-R, Tan S-C, Chen Y, Chi KT (2013) Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control. IEEE Trans Power Electron 28:779–792

    Article  Google Scholar 

  89. Zhu G-R, Xiao C-Y, Wang H-R, Chen W, Tan S-C. Dynamic characteristics of boost inverter with waveform control. In: Proceedings of IEEE twenty-ninth annual applied power electronics conference and exposition (APEC), 2014: IEEE; 2014. pp 1771–1775

  90. Zhu G-R, Xiao C-Y, Wang H-R, Tan S-C (2016) Closed-loop waveform control of boost inverter. IET Power Electron 9:1808–1818

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedra Saleeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See appendix Figs. 30, 31, 32, 33 and Table 5.

Fig. 30
figure 30

Three-phase voltage source inverter (VSI) topology [14]

Fig. 31
figure 31

Three-phase switched boost inverter (SBI) topology [15]

Fig. 32
figure 32

Three-phase Z-source inverter (ZSI) topology [21]

Fig. 33
figure 33

Single-phase differential boost inverter (DBI) topology [22]

Table 5 Summary of a single-stage power conversion topologies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleeb, H., Sayed, K., Kassem, A. et al. Control and analysis of bidirectional interleaved hybrid converter with coupled inductors for electric vehicle applications. Electr Eng 102, 195–222 (2020). https://doi.org/10.1007/s00202-019-00860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00860-3

Keywords

Navigation