Skip to main content
Log in

Frequency-domain modeling of unshielded multiconductor power cables for periodic excitation with new experimental protocol for wide band parameter identification

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A complete modeling technique for unshielded power cables is proposed. The focus is on applications where the resonance phenomena take place in electrically long cables and is originated from periodic excitation, such as power converters. The resonance problems caused by switching converters tend to become more common with the advent of wide band gap semiconductors. This paper includes a new experimental protocol specific for unshielded power cable parameter identification in a wide frequency band, from DC up to medium frequencies (tens of MHz), with an impedance analyzer. It also introduces a frequency-domain simulation tool with conversion to the time domain, via the Fourier series. This frequency-domain modeling is straightforward, and its accuracy depends only on the accuracy of the cable parameter identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Agrawal AK, Lee K, Scott LD et al (1979) Experimental characterization of multiconductor transmission lines in the frequency domain. IEEE Trans EMC 21:28–32

    Google Scholar 

  2. Batura R, Opydo W (2005) Overvoltages caused by switching unloaded cable lines by a vacuum switch. Electr Eng 87(4):181–189. https://doi.org/10.1007/s00202-004-0238-2

    Article  Google Scholar 

  3. Brandão JA, das Neves MG (2011) Basic principles concerning the experimental evaluation of the frequency-dependent parameters of shielded and unshielded three-phase symmetric cables. IEEE Trans Power Deliv 26:556–564

    Article  Google Scholar 

  4. Chu X, Lin F, Yang Z (2014) The analysis of time-varying resonances in the power supply line of high speed trains. In: International power electronics conference

  5. Clavel E, Roudet J, Guichon J et al (2018) A nonmeshing approach for modeling grounding. IEEE Trans EMC 60(3):795–802. https://doi.org/10.1109/TEMC.2017.2743227

    Google Scholar 

  6. Clavel E, Roudet J, Hayashi Feuerharmel A, et al (2019) Benefits of the ground peec modeling approach—example of a residential building struck by lightning. IEEE Trans EMC. pp 1–9. https://doi.org/10.1109/TEMC.2019.2898234

  7. Cristina S, Feliziani M (1989) A finite element technique for multiconductor cable parameters calculation. IEEE Trans Magn 25:2986–2988

    Article  Google Scholar 

  8. Gao Z, Ji R, Zhang X, et al (2016) Finite-element modeling and impedance characteristics analysis of two parallel cables in aircraft power system. In: 2016 IEEE/CSAA international conference on aircraft utility systems (AUS), Beijing

  9. Gentili GG, Salazar-Palma M (1995) The definition and computation of modal characteristic impedance in quasi-TEM coupled transmission lines. IEEE Trans Microw Theory Tech, pp 338–343

  10. Gómez P, Uribe FA (2009) The numerical Laplace transform: an accurate technique for analyzing electromagnetic transients on power system devices. Int J Electr Power Energy Syst 31(2):116–123. https://doi.org/10.1016/j.ijepes.2008.10.006

    Article  Google Scholar 

  11. Gong X, Ferreira JA (2014) Comparison and Reduction of conducted EMI in SiC JFET and Si IGBT-based motor drives. IEEE Trans Power Electron 29(4):1757–1767. https://doi.org/10.1109/TPEL.2013.2271301

    Article  Google Scholar 

  12. Guo JJ, Boggs SA (2011) High frequency signal propagation in solid dielectric tape shielded power cables. IEEE Trans Power Deliv 26(3):1793–1802. https://doi.org/10.1109/TPWRD.2010.2099134

    Article  Google Scholar 

  13. Habib S, Kordi B (2013) Calculation of multiconductor underground cables high-frequency per-unit-length parameters using electromagnetic modal analysis. IEEE Trans Power Deliv 28:276–284

    Article  Google Scholar 

  14. Honarbakhsh B, Asadi S (2017) Analysis of multiconductor transmission lines using the CN-FDTD method. IEEE Trans EMC 59:184–192

    Google Scholar 

  15. Hosoya M (2000) The simplest equivalent circuit of a multi-terminal network. Bull Fac Sci Univ Ryukyus 70:1–10

    MathSciNet  MATH  Google Scholar 

  16. Idir N, Weens Y, Franchaud JJ (2009) Skin effect and dielectric loss models of power cables. IEEE Trans Dielectr Electr Insul 16(1):147–154. https://doi.org/10.1109/TDEI.2009.4784562

    Article  Google Scholar 

  17. Kerkman RJ, Skibinski DLGL (1997) Interaction of drive modulation and cable parameters on AC motor transients. IEEE Trans Ind Appl 33(3):722–731. https://doi.org/10.1109/28.585863

    Article  Google Scholar 

  18. Keysight Technologies: E4990A Impedance Analyzer—Data Sheet (2018). https://literature.cdn.keysight.com/litweb/pdf/5991-3890EN.pdf?id=2459964. Accessed 11 Jan 2019

  19. Kim JH, Oh D, Kim W (2010) Accurate characterization of broadband multiconductor transmission lines for high-speed digital systems. IEEE Trans Adv Packag 33:857–867

    Article  Google Scholar 

  20. Knockaert J, Peuteman J, Catrysse J et al (2010) A vector impedance meter method to characterize multiconductor transmission-line parameters. IEEE Trans EMC 52:1019–1025

    Google Scholar 

  21. Kruizinga B, Wouters PAAF, Steennis EF (2015) High frequency modeling of a shielded four-core low voltage underground power cable. IEEE Trans Dielectr Electr Insul 22:649–656

    Article  Google Scholar 

  22. Marlier C, Videt A, Idir N (2015) NIF-based frequency-domain modeling method of three-wire shielded energy cables for EMC simulation. IEEE Trans EMC 57(1):145–155. https://doi.org/10.1109/TEMC.2014.2359514

    Google Scholar 

  23. Moreira AF, Lipo TH, Venkataramanan G et al (2002) High-frequency modeling for cable and induction motor overvoltage studies in long cable drivers. IEEE Trans Power Electron 25:1297–1306

    Google Scholar 

  24. Paul C (2008) Analysis of multiconductor transmission lines. IEEE Press, New Jersey

    Google Scholar 

  25. de Paula H, de Andrade DA, Chaves MLR et al (2008) Methodology for cable modeling and simulation for high-frequency phenomena studies in pwm motor drives. IEEE Trans Power Electron 23:744–752

    Article  Google Scholar 

  26. Revol B, Roudet J, Schanen J et al (2011) Emi study of three-phase inverter-fed motor drives. IEEE Trans Ind Appl 47(1):223–231

    Article  Google Scholar 

  27. Scheich R, Roudet J, Bigot S et al (1993) Common mode RFI of a HF power converter: phenomena, its modelling and its measurement. In: EPE’93

  28. Sousounis MC, Shek JKH, Mueller MA (2016) Filter design for cable overvoltage and power loss minimization in a tidal energy system with onshore converters. IEEE Trans Sustain Energy 7:400–408

  29. Stevanović I, Wunsch B, Madonna GL et al (2014) High-frequency behavioral multiconductor cable modeling for emi simulations in power electronics. IEEE Trans Ind Inf 10:1392–1400

    Article  Google Scholar 

  30. Uribe FA, Flores J (2018) Parameter estimation of arbitrary-shape electrical cables through an image processing technique. Electr Eng 100(3):1749–1759. https://doi.org/10.1007/s00202-017-0651-y

    Article  Google Scholar 

  31. Wang L, Avolio G, Deconinck G et al (2014) Estimation of multi-conductor powerline cable parameters for the modelling of transfer characteristics. IET Sci Meas Technol 8:39–45. https://doi.org/10.1049/iet-smt.2012.0123

    Article  Google Scholar 

  32. Wang L, Ho CN, Canales F et al (2010) High-frequency modeling of the long-cable-fed induction motor drive system using TLM approach for predicting overvoltage transients. IEEE Trans Power Electron 25(10):2653–2664. https://doi.org/10.1109/TPEL.2010.2047027

    Article  Google Scholar 

  33. Weens Y, Idir N, Bausière R et al (2006) Modeling and simulation of unshielded and shielded energy cables in frequency and time domains. IEEE Trans Magn 44:1876–1882

    Article  Google Scholar 

  34. Williams DF (1997) Multiconductor transmission line characterization. IEEE Trans Compon Packag Manuf Technol 20:129–132

    Article  Google Scholar 

  35. Wunsch B, Stevanović I (2017) Length-scalable multi-conductor cable modeling for EMI simulations in power electronics. IEEE Trans Power Electron 32:1908–1916

    Article  Google Scholar 

  36. Zhang S, Jiang S, Lu X et al (2014) Resonance issues and damping techniques for grid-connected inverters with long transmission cable. IEEE Trans EMC 29:110–120

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mario Leite from IPT (Institute of Technological Research, São Paulo, Brazil) for his help on measurements that contributed to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiris G. Bade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The estimation of the stray capacitance between the cable conductors and a concrete plane (floor, walls) can be done using the PEEC technique described in [5, 6]. This method was applied to calculate the capacitance of a wire of radius \(r_0\) and length \(\ell \) parallel to a concrete ground, placed at a distance h above the ground, as shown in Fig. 19. In the figure, \(\sigma _1\) is the complex conductivity of the air and \(\sigma _2\) is the complex conductivity of the concrete. The capacitance between the wire and the concrete surface can be calculated with Eqs. (15) to (18).

Fig. 19
figure 19

Schematic for the capacitance calculation

$$\begin{aligned} C_\mathrm{CM}&=-\frac{1}{{{\mathbf {I}}}{{\mathbf {m}}}(Z_\mathrm{CM})\omega } \end{aligned}$$
(15)
$$\begin{aligned} Z_\mathrm{CM}&=Z_1+Z_2 \end{aligned}$$
(16)
$$\begin{aligned} Z_1&= \frac{1}{2\pi \ell \sigma _1}\left[ \ln \left( \frac{\ell +\sqrt{\ell ^2+r_0^2}}{r_0}\right) \right. +\nonumber \\&\quad \left. -\,\sqrt{1+\left( \frac{r_0}{\ell }\right) ^2}+\frac{r_0}{\ell } \right] \end{aligned}$$
(17)
$$\begin{aligned} Z_2&= \frac{1}{2\pi \ell \sigma _1}\frac{\sigma _1-\sigma _2}{\sigma _1+\sigma _2}\left[ \ln \left( \frac{\ell +\sqrt{\ell ^2+r_0^2}}{r_0+2h}\right) +\right. \nonumber \\&\quad \left. -\,\sqrt{1+\left( \frac{r_0+2h}{\ell }\right) ^2}+\frac{r_0+2h}{\ell } \right] \end{aligned}$$
(18)

As an example, suppose the section of the wire is \(2.5\,\mathrm{mm}^2\), its length \(\ell =1\) m, and it is placed at \(h=1\) m. In this case, the stray capacitance between the wire and the concrete floor (\(\sigma _2=2.5\) mS/m) would be:

$$\begin{aligned} C_{CM}=8.6\, pF \end{aligned}$$

Based on this example, the stray capacitances in the impedance measurement set were estimated to be of the order of 10 pF along the document.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bade, T.G., Roudet, J., Guichon, JM. et al. Frequency-domain modeling of unshielded multiconductor power cables for periodic excitation with new experimental protocol for wide band parameter identification. Electr Eng 101, 333–343 (2019). https://doi.org/10.1007/s00202-019-00780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00780-2

Keywords

Navigation