Skip to main content
Log in

MMC-based solid-state transformer model including semiconductor losses

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the model of a solid-state transformer (SST) for distribution system studies with some advanced features. The model is based on a previous work in which a bidirectional SST with a MV-side modular multilevel converter (MMC) configuration was proposed. The new model incorporates the representation of semiconductor losses and some improvements in the control strategies of some SST stages. As the previous model, the new model has been implemented in Matlab/Simulink, and its behavior has been tested by carrying out several case studies under different operating conditions when the SST is connected to a radial distribution system. The paper also includes a discussion of the main model limitations and the future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Bifaretti S, Zanchetta P, Watson A, Tarisciotti L, Clare JC (2011) Advanced power electronic conversion and control system for universal and flexible power management. IEEE Trans Smart Grid 2(2):231–243

    Article  Google Scholar 

  2. Wang J, Huang AQ, Sung W, Liu Y, Baliga BJ (2009) Smart grid technologies. IEEE Ind Electron Mag 3(2):16–23

  3. Lai JS (2009) Power conditioning circuit topologies. IEEE Ind Electron Mag 3(2):24–34

  4. Qin H, Kimball JW (2010) A comparative efficiency study of silicon-based solid state transformers. In: IEEE Energy Conversion Congress and Exposition (ECCE)

  5. Peña-Alzola R, Gohil G, Mathe L, Liserre M, Blaabjerg F (2013) Review of modular power converters solutions for smart transformer in distribution system. In: IEEE energy conversion congress and exposition (ECCE)

  6. Guerra G, Martinez-Velasco JA (2017) A solid state transformer model for power flow calculations. Int J Electr Power Energy Syst 89:40–51

    Article  Google Scholar 

  7. Rajapakse AD, Gole AM, Wilson PL (2005) Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic system. IEEE Trans Power Del 20(1):319–327

    Article  Google Scholar 

  8. Drofenik U, Kolar JW (2005) A general scheme for calculating switching- and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems. Power Electronic Systems Laboratory (PES), ETH, Zurich

    Google Scholar 

  9. Hosseini Aghdam MG, Fathi SH, Ghasemi A (2005) The analysis of conduction and switching losses in three-phase OHSW multilevel inverter using switching functions. In: IEEE international conference on power electronics and drive systems (PEDS)

  10. Wang H, Tang G, He Z, Cao J, Zhang X (2015) Analytical approximate calculation of losses for modular multilevel converters. IET Gener Transm Dis 9(16):2455–2465

    Article  Google Scholar 

  11. Adabi ME, Martinez Velasco JA, Alepuz S (2017) Modeling and simulation of a MMC-based solid-state transformer. Electr Eng. doi:10.1007/s00202-017-0510-x

    Google Scholar 

  12. Davari M, Mohamed YARI (2017) Robust vector control of a very weak grid-connected voltage-source converter considering the phase locked loop dynamics. IEEE Trans Power Electron 32(2):977–994

    Article  Google Scholar 

  13. Development of a new multilevel converter-based intelligent universal transformer: design analysis. EPRI Report 1002159 (2004)

  14. She X, Huang AQ, Burgos R (2013) Review of solid-state transformer technologies and their application in power distribution systems. IEEE J Emerg Sel Top Power Electron 1(3):186–198

    Article  Google Scholar 

  15. Falcones Zambrano SD (2011) A DC–DC multiport converter based solid state transformer integrating distributed generation and storage. PhD Thesis, Arizona State University

  16. López M, Rodríguez A, Blanco E, Saeed M, Martínez Á, Briz F (2015) Design and implementation of the control of an MMC-based solid state transformer. In: 13th IEEE international conference on industrial informatics (INDIN)

  17. Xiong J, Li Y, Cao Y, Panasetsky D, Sidorov D (2016) Modeling and operating characteristic analysis of MMC-SST based shipboard power system. In: IEEE PES Asia–Pacific power and energy engineering conference (APPEEC)

  18. Shojaei A (2014) Design of modular multilevel converter-based solid state transformers. Master’s Dissertation, McGill University

  19. Saeedifard M, Iravani R (2010) Dynamic performance of a modular multilevel back-to-back HVDC System. IEEE Trans Power Electron 25(4):2903–2912

    Article  Google Scholar 

  20. Saad H, Dennetiere S, Mahseredjian J, Ould-Bachir T, David JP (2014) Simulation of transients for VSC-HVDC transmission systems based on modular multilevel converters. In: Martinez-Velasco JA (ed) Chapter 9 of transient analysis of power systems. Wiley-IEEE Press. ISBN: 9781118694190

  21. Harnefors L, Bongiorno M, Lundberg S (2007) Input-admittance calculation and shaping for controlled voltage-source converters. IEEE Trans Ind Electron 54(6):3323–3334

    Article  Google Scholar 

  22. Dong D, Wen B, Boroyevich D, Mattavelli P, Xue Y (2015) Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions. IEEE Trans Ind Electron 62(1):310–321

    Article  Google Scholar 

  23. Zhou J, Hui D, Fan S, Zhang Y, Gole AM (2014) Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter. IEEE Trans Power Del 29(5):2287–2296

    Article  Google Scholar 

  24. Huang Y, Yuan X, Hu J, Zhou P (2015) Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control. IEEE J Emerg Sel Top Power Electron 3(4):1193–1204

    Article  Google Scholar 

  25. Lezana P, Silva CA, Rodríguez J, Pérez MA (2007) Zero-steady-state-error input-current controller for regenerative multilevel converters based on single-phase cells. IEEE Trans Ind Electron 54(2):733–740

    Article  Google Scholar 

  26. Helin W, Qiming C, Ming L, Gen C, Liang D (2014) The study of single-phase PWM rectifier based on pr control strategy. In: 26th Chinese control and decision conference (CCDC)

  27. Martinez-Velasco JA, Alepuz S, González-Molina F, Martin-Arnedo J (2014) Dynamic average modeling of a bidirectional solid state transformer for feasibility studies and real-time implementation. Electric Power Syst Res 117:143–153

    Article  Google Scholar 

  28. Alepuz S, González F, Martin-Arnedo J, Martinez-Velasco JA (2013) Solid state transformer with low-voltage ride-through and current unbalance management capabilities. In: 39th annual conference of the IEEE industrial electronics society (IECON)

  29. Alepuz S, González-Molina F, Martin-Arnedo J, Martinez-Velasco JA (2014) Development and testing of a bidirectional distribution electronic power transformer model. Electric Power Syst Res 107:230–239

    Article  Google Scholar 

  30. Ebrahimzadeh E, Farhangi S, Iman-Eini H, Blaabjerg F (2016) Modulation technique for four-leg voltage source inverter without a look-up table. IET Power Electron 9(4):648–656

    Article  Google Scholar 

  31. Perales MA, Prats MM, Portillo R, Mora JL, Leon JI, Franquelo LG (2003) Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters. IEEE Power Electron Lett 99(4):104–109

    Article  Google Scholar 

  32. Gannett RA (2001) Control strategies for high power four-leg voltage source inverters. Master’s Dissertation, Faculty of the Virginia Polytechnic Institute and State University

  33. Mattavelli P, Fasolo S (2000) Implementation of synchronous frame harmonic control for high-performance AC power supplies. In: IEEE industry applications conference (IAS)

  34. Dehghan SM, Ale Ahmad A, Lourakzadegan R, Fazeli M, Mohamadian M, Abrishamifar A (2011) A high performance controller for parallel operation of three-Phase UPSs powering unbalanced and nonlinear loads. In: 2nd power electronics, drive systems and technologies Conference (PEDSTC)

  35. Pattnaik M, Kastha D (2013) Unbalance and harmonic voltage compensation for a stand-alone variable speed constant frequency double-output induction generator supplying non-linear and unbalanced loads. IET Electr Power Appl 7(1):27–38

    Article  Google Scholar 

  36. Wang D, Tian J, Mao C, Lu J, Duan Y, Qiu J, Cai H (2016) A 10-kV/400-V 500-kVA electronic power transformer. IEEE Trans Ind Electron 63(11):6653–6663

    Article  Google Scholar 

  37. Savaghebi M, Jalilian A, Vasquez JC, Guerrero JM (2011) Selective compensation of voltage harmonics in an islanded microgrid. In: 2nd power electronics, drive systems and technologies Conference (PEDSTC)

  38. Graovac D, Pürschel M (2009) IGBT power losses calculation using the data-sheet parameters. In: Infineon technologies application note 1

  39. Blaabjerg F, Jaeger U, Munk-Nielsen S, Pedersen JK (1995) Power losses in PWM-VSI inverter using NPT or PT IGBT devices. IEEE Trans Power Electron 10(3):358–367

    Article  Google Scholar 

  40. http://in.mathworks.com/matlabcentral/fileexchange/35980-loss-calculation-in-a-buck-converter-using-simpowersystems-and-simscape

  41. Bahman AS, Blaabjerg F (2013) Comparison between 9-level hybrid asymmetric and conventional multi-level inverters for medium voltage application. In: IEEE international symposium on industrial electronics (ISIE)

  42. Liu C, Wu B, Zargari NR, Xu D, Wang J (2009) A novel three-phase three-leg AC/AC converter using nine IGBTs. IEEE Trans Power Electron 24(5):1151–1160

    Article  Google Scholar 

  43. Fatemi A, Azizi M, Mohamadian M, Yazdian Varjani A, Shahparasti M (2013) Single-phase dual-output inverters with three-switch legs. IEEE Trans Ind Electron 60(5):1769–1779

    Article  Google Scholar 

  44. Tu Q, Xu Z (2011) Power losses evaluation for modular multilevel converter with junction temperature feedback. In: IEEE power & energy society general meeting

  45. Hassanpoor A, Norrga S, Nami A (2015) Loss evaluation for modular multilevel converters with different switching strategies. In: 9th international conference on power electronics and ECCE Asia (ICPE-ECCE Asia)

  46. Li J, Zhao X, Song Q, Rao H, Xu S, Chen M (2013) Loss calculation method and loss characteristic analysis of MMC based VSC-HVDC system. In: IEEE international symposium on industrial electronics (ISIE)

  47. Rajapakse AD, Gole AM, Jayasinghe RP (2009) An improved representation of facts controller semiconductor losses in EMTP-type programs using accurate loss-power injection into network solution. IEEE Trans Power Del 24(1):381–389

    Article  Google Scholar 

  48. Luo Z (2002) A thermal model for IGBT modules and its implementation in real time simulator. PhD Dissertation, University of Pittsburgh

  49. Ma K, Bahman AS, Beczkowski S, Blaabjerg F (2015) Complete loss and thermal model of powersemiconductors including devicerating information. IEEE Trans Power Electron 30(5):2556–2569

    Article  Google Scholar 

  50. Oberdorf MC (2006) Power losses and thermal modeling of a voltage source inverter. Master’s Dissertation, Naval postgraduate school

  51. Huber JE, Kolar JW (2014) Volume/weight/cost comparison of a 1 MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer. In: IEEE energy conversion congress exposition (ECCE)

  52. Rothmund D, Ortiz G, Guillod T, Kolar JW (2015) 10kV SiC-based isolated DC-DC converter for medium voltage-connected solid-state transformers. In: IEEE applied power electronics conference and exposition (APEC)

  53. Madhusoodhanan S, Tripathi A, Patel D, Mainali K, Kadavelugu A, Hazra S, Bhattacharya S, Hatua K (2015) Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans Ind Appl 51(4):3343–3360

    Article  Google Scholar 

  54. Huang AQ, Wang L, Tian Q, Zhu Q, Chen D, Yu W (2016) Medium voltage solid state transformers based on 15 kV SiC MOSFET and JBS diode. In: 42nd annual conference of the IEEE industrial electronics society (IECON)

  55. Evans NM, Lagier T, Pereira A (2016) A preliminary loss comparison of solid-state transformers in a rail application employing silicon carbide (SiC) MOSFET switches. In: 8th IET international conference on power electronics, machines and drives (PEMD)

  56. Huang AQ (2016) Medium-voltage solid-state transformer. IEEE Ind Electron Mag 10(3):29–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahim Adabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adabi, M.E., Martinez-Velasco, J.A. MMC-based solid-state transformer model including semiconductor losses. Electr Eng 100, 1613–1630 (2018). https://doi.org/10.1007/s00202-017-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0640-1

Keywords

Navigation