Skip to main content

Advertisement

Log in

Optimization of the temperature profile of a high-powered strontium bromide laser

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The subject of investigation is a new high-powered strontium bromide (He–\(\hbox {SrBr}_{2})\) vapor laser emitting in the infrared spectrum. The aim of the study is to investigate the possibilities for optimizing the thermal mode of the laser by enhancing its operating characteristics. Based on a previous analytical self-consistent model of the authors, a model of the device temperature profile is presented under the conditions of forced convection. The model consists of quasi-stationary heat transfer equation with appropriate set of boundary conditions to investigate the influence of the cooling processes in the laser tube with transverse external air cooling. An assessment is performed of the nature of the main physical processes accompanying the distribution of heat energy from the center of the tube and its interaction with the ambient environment under forced convection. Through simulations, it has been found that when air flow rate changes, the operating temperature can vary widely within 100 K. It is also illustrated how to increase the supplied electric power while maintaining the maximum working temperature at the center of the laser tube. The model allows for detailed examination of the thermal processes, it does not require temperature measurements, and it can be used for different geometric dimensions of the laser tube, values of the supplied electric power, coefficients of thermal conductivity of the structural materials, and other operational and design parameters. The developed model is applicable to a wide range of metal vapor lasers, and other closely related ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McLucas CW, McIntosh AI (1986) Discharge heated longitudinal Sr+ recombination laser. J Phys D Appl Phys 19:1189–1195. doi:10.1088/0022-3727/19/7/009

    Article  Google Scholar 

  2. Pan BL, Yao ZX, Chen G (2002) A discharge—excited \(\text{ SrBr }_{2}\) vapour laser. Chin Phys Lett 19(7):941–943. doi:10.1088/0256-307X/19/7/318

    Article  Google Scholar 

  3. Temelkov KA, Vuchkov NK, Pan BL, Sabotinov NV, Ivanov B, Lyutov L (2006) Strontium atom laser excited by nanosecond pulsed longitudinal He–\(\text{ SrBr }_{2}\) discharge. J Phys D Appl Phys 39(17):3769–3772. doi:10.1088/0022-3727/39/17/010

    Article  Google Scholar 

  4. Chebotarev GD, Latush EL, Prutsakov OO, Fesenko AA (2008) Kinetics of the active medium of a He–Sr+ recombination laser: 1. Spatiotemporal characteristics. Quantum Electron 38(4):299–308. doi:10.1070/QE2008v038n04ABEH013697

    Article  Google Scholar 

  5. Chebotarev GD, Latush EL, Fesenko AA (2008) Kinetics of the active medium of a He–Sr+ recombination laser: 2. Achievable energy characteristics. Quantum Electron 38(4):309–318. doi:10.1070/QE2008v038n04ABEH013698

    Article  Google Scholar 

  6. Soldatov AN, Sabotinov NV, Latush EL, Chebotarev GD, Vuchkov NK, Yudin NA (2013) Strontium and calcium vapor lasers I. Prof. Marin Drinov Academic Publishing House, Sofia

    Google Scholar 

  7. Soldatov AN, Sabotinov NV, Latush EL, Chebotarev GD, Vuchkov NK, Yudin NA (2014) Strontium and calcium vapor lasers II. Prof. Marin Drinov Academic Publishing House, Sofia

    Google Scholar 

  8. Edwards G, Logan R, Copeland M et al (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371(6496):416–419. doi:10.1038/371416a0

    Article  Google Scholar 

  9. Auerhammer JM, Walker R, Van der Meer AFG, Jean B (1999) Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX. Appl Phys B Lasers Opt 68(1):111–119. doi:10.1007/s003400050595

    Article  Google Scholar 

  10. Youn J-I, Peavy GM, Venugopalan V (2005) Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 \(\mu \)m: mass removal studies. Laser Surg Med 36:202–209. doi:10.1002/lsm.20138

    Article  Google Scholar 

  11. Temelkov KA, Vuchkov NK, Pan BL, Sabotinov NV, Ivanov B, Lyutov L (2007) Strontium bromide vapor laser excited by nanosecond pulsed longitudinal discharge. In: Atanasov PA, Dreischuh TN, Gateva SV, Kovachev LM (eds) SPIE 6604(660410), pp 1–5. doi:10.1117/12.726993

  12. Temelkov KA, Vuchkov NK, Freijo-Martin I, Lema A, Lyutov L, Sabotinov NV (2009) Experimental study on the spectral and spatial characteristics of a high- power He–\(\text{ SrBr }_{2}\) laser. J Phys D Appl Phys 42(11):5105–5110. doi:10.1088/0022-3727/42/11/115105

    Article  Google Scholar 

  13. Temelkov KA, Vuchkov NK, Mao B, Atanasov EP, Lyutov L, Sabotinov NV (2009) High-power atom laser excited in nanosecond pulsed longitudinal He–\(\text{ SrBr }_{2}\) discharge. IEEE J Quant Electron 45(3):278–281. doi:10.1109/JQE.2009.2013117

    Article  Google Scholar 

  14. Vuchkov N, Temelkov K, Sabotinov N (2012) Laser tube for strontium infrared laser with strontium halide vapours. BG patent No. 66247

  15. Iliev IP, Gocheva-Ilieva SG, Temelkov KA, Vuchkov NK, Sabotinov NV (2009) Analytical model of temperature profile for a He–\(\text{ SrBr }_{2}\) laser. Optoelectron Adv Mater 11(11):1735–1742

    Google Scholar 

  16. Iliev I, Gocheva-Ilieva S, Vuchkov N, Temelkov K, Sabotinov N (2010) Temperature model of high-powered \(\text{ SrBr }_{2}\) laser. In: Todorov MD, Christov CI (eds) American Institute of Physics, conference proceedings, vol 1301, pp 138–145. doi:10.1063/1.3526607

  17. Iliev IP, Gocheva-Ilieva SG, Temelkov KA, Vuchkov NK, Sabotinov NV (2011) An improved radial temperature model of a high-powered He–\(\text{ SrBr }_{2}\) laser. Opt Laser Technol 43(3):642–647. doi:10.1016/j.optlastec.2010.09.005

    Article  Google Scholar 

  18. Iliev IP (2013) Temperature analysis for designing a new high-powered strontium bromide laser. Int J Sci Technol Res 2(2):133–137

    MathSciNet  Google Scholar 

  19. Arnaudov A (2012) Computer study of the temperature distribution of the gas discharge tube of a strontium bromide vapor laser. J Eng Stud Res 18(1):16–23

    Google Scholar 

  20. Iliev IP, Gocheva-Ilieva SG (2016) Self-consistent analytical model of the radial temperature profile of a high-powered He–\(\text{ SrBr }_{2}\) laser. Opt Quant Electron 48(397):1–12. doi:10.1007/s11082-016-0665-0

    Google Scholar 

  21. Özişik MN (1985) Heat transfer: a basic approach. McGraw-Hill, Boston

    MATH  Google Scholar 

  22. Mineral wool insulation. The Engineering ToolBox. http://www.engineeringtoolbox.com/mineral-wool-insulation-k-values-d_815.html. Accessed 17 July 2017

Download references

Acknowledgements

This study is partially supported by the Bulgarian Ministry of Education and Science and NPD of University of Plovdiv Paisii Hilendarski, Grant MU17-FMI-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snezhana Georgieva Gocheva-Ilieva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, I.P., Gocheva-Ilieva, S.G. Optimization of the temperature profile of a high-powered strontium bromide laser. Electr Eng 100, 1537–1544 (2018). https://doi.org/10.1007/s00202-017-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0631-2

Keywords

Mathematics Subject Classification

Navigation