Skip to main content
Log in

Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation. Part 1: Analytical model

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Eccentric rotor motion of an electric motor induces an unbalanced magnetic pull. This eccentricity force may couple the electromagnetic system with the flexural vibration modes of the shaft. This paper presents an analytic model for this eccentricity force allowing an arbitrary rotor motion and transient operation. The general equations were simplified for the constant flux and steady-state operation. These simplified equations correspond well to the results presented earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a p±1 :

model parameters related to harmonic components p±1

B :

magnetic flux density in the air gap

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{B}}} _{\upsilon } \) :

magnetic flux density in the air gap; harmonic component υ

c p±1 :

model parameters related to harmonic components p±1

d r :

outer diameter of the rotor

F e :

unbalanced magnetic pull

f δ :

magnetomotive force in the air gap

f s :

magnetomotive force of stator currents; fundamental component

f r,n :

magnetomotive force of rotor mesh n

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{f}}} \,_{{{\text{r}},\upsilon }} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{f}}} _{{\,{\text{s}},\upsilon }} \) :

magnetomotive force of component υ induced by rotor and stator windings

g p±1 :

force variable related to harmonic components p±1

ir,n, irb,m:

current of rotor cage-ring segment n and rotor cage bar m

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{i}}} _{{\,{\text{r}},\upsilon }} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{i}}} _{{{\text{s}},\upsilon }} \) :

harmonic rotor and stator current component υ

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{i}}} _{{{\text{ re}},p}} \) :

fundamental component of equivalent rotor current

krw, ksw:

winding factor of rotor and stator winding

K :

ratio between the effective angular width of the tooth and the slot pitch

k p±1 :

coupling factors of components p±1 due to leakage flux and saturation

k 0 :

parameter related to the negative spring constant

L :

self-inductance of one rotor-cage mesh

L bσ :

slot- and tooth-tip-leakage inductance of one rotor bar

L eσ :

end-leakage inductance of one ring segment between two rotor bars

L m,υ :

magnetising inductance of harmonic component υ

Lr,υ, Ls,υ:

rotor and stator inductance of harmonic component υ

Lrσ,υ, Lsσ,υ:

leakage inductance of rotor and stator for harmonic component υ

l e :

equivalent core length

Nr, Ns:

number of turns in series of rotor and stator winding

N se :

equivalent number of turns in series of stator winding

p :

number of pole pairs

p c :

centre point position of the rotor

p 0 :

constant whirling radius of the rotor

Qr, Qs:

number of rotor and stator slots

q p±1 :

mixed variables related to harmonic components p±1

Rb, Re:

resistance of one rotor bar and one end ring segment between rotor bars

Rr,υ, Rs,υ:

rotor and stator resistance of harmonic component υ

s :

slip

T e :

electromagnetic torque

t :

time

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{u}}} _{{{\text{r}}{\text{,}}p}} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{u}}} _{{{\text{s}}{\text{,}}p}} \) :

rotor and stator voltage of fundamental component

δ e :

equivalent air gap including slotting

θ :

angle of rotor rotation

ϑ b :

electrical angle of space vector of magnetic flux density

Λ 0 :

air-gap permeance per unit of area

µ 0 :

permeability of free space

σ r :

radial tensile stress

τ p±1 :

time constant of harmonic component p±1

υ :

ordinal number of a harmonic

ϕ :

angular coordinate

φ r,n :

magnetic flux through cage mesh n

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{\phi }}} _{{{\text{r}},\upsilon }} \) :

magnetic flux of rotor cage for harmonic component υ

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{\psi }}} _{{\text{r}}} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{\psi }}} _{{{\text{r}},p}} \) :

rotor flux linkage of fundamental component

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{\psi }}} _{{\text{s}}} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{\psi }}} _{{{\text{s}},p}} \) :

stator flux linkage of fundamental component

ω s :

angular frequency of stator field

ω b :

angular frequency of magnetic flux density of fundamental component

ω w :

whirling frequency

Ωm:

mechanical angular velocity of rotor

x :

complex number

x*:

complex conjugate of x

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{x}}} \) :

space vector

\( \underline {\tilde x} _m\) :

discrete Fourier transform component m of sequence x n

\( \underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{x}}} ^{{\text{r}}} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{x}}} ^{{\text{s}}} ,\underline{{\ifmmode\expandafter\hat\else\expandafter\^\fi{x}}} ^{{\text{k}}} \) :

space vector (or complex number) in rotor, stator or more general reference frame

References

  1. Freise W, Jordan H (1962) Einseitige magnetische Zugkräfte in Drehstrommaschinen. ETZ: elektrotech Z Ausg A 83:299-303

  2. Früchtenicht J, Jordan H, Seinsch HO (1982) Exzentrizitätsfelder als Ursache von Laufinstabilitäten bei Asynchronmaschinen. Part 1: Elektromagnetissche Federzahl und elektromagnetische Dämpfungskonstante. Part 2: Selbsterregte Biegeeigenschwingungen des Läufers. Arch Electrotech 65:271-292

    Google Scholar 

  3. Belmans R, Vandenput A, Geysen W (1987) Influence of unbalanced magnetic pull on the radial stability of flexible-shaft induction machines. IEE Proc. 134B:101-109

  4. Smith AC, Dorrell DG (1996) Calculation and measurement of unbalanced magnetic pull in cage induction motors with eccentric rotors. Part 1: Analytical model. Part 2: Experimental investigation. IEE Proc Electr Power Applic 143:193-210

    Google Scholar 

  5. Skubov DYu, Shumakovich IV (1999) Stability of the rotor of an induction motor in the magnetic field of the current windings. J Mech Solids 34:28-40 (translated from Mekh Tverd Tela, 1999, 4:36-50)

  6. Arkkio A, Antila M, Pokki K, Simon A, Lantto E (2000) Electromagnetic force on a whirling cage rotor. IEE Proc Electr Power Applic 147:353-360

    Google Scholar 

  7. Holopainen TP Tenhunen A Lantto E Arkkio A (2004) Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation. Part 2: Verification and numerical parameter estimation. Electr Eng (in press)

    Google Scholar 

  8. Holopainen TP, Tenhunen A, Arkkio A (2002) Electromagnetic circulatory forces and rotordynamic instability in electric machines. In: Proceedings of the 6th International Conference on Rotor dynamics, IFToMM, September 2002, Sydney, Australia, pp 456-463

  9. Holopainen TP, Tenhunen A, Arkkio A (2004) Electromechanical interaction in rotordynamics of cage induction motors. J Sound Vibr (in press)

  10. Kovács PK (1984) Transient phenomena in electrical machines. Elsevier, Amsterdam

  11. Müller G (1985) Elektrische Maschinen-Betriebsverhalten rotierender elektrischer Maschinen. VEB Verlag Technik, Berlin

  12. Heller B, Hamata V (1977) Harmonic field effects in induction machines. Elsevier, Amsterdam

  13. Taegen F (1964) Die Bedeutung der Läufernutschlitze für die Theorie der Asynchronmaschine mit Käfigläufer. Arch Electrotech 48:373-386

    Google Scholar 

  14. Timár PL (1995) Induction motor field analysis. In: Engelmann RH, Middendorf WH (eds) Handbook of electric motors. Marcel Dekker, New York, pp 228-273

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Technology Agency of Finland (Tekes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Holopainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holopainen, T.P., Tenhunen, A., Lantto, E. et al. Unbalanced magnetic pull induced by arbitrary eccentric motion of cage rotor in transient operation. Part 1: Analytical model. Electr Eng 88, 13–24 (2005). https://doi.org/10.1007/s00202-004-0257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-004-0257-z

Keywords

Navigation