Skip to main content
Log in

Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A new method based on artificial neural networks for calculating the narrow aperture dimension of the pyramidal horn is presented. The Levenberg–Marquardt algorithm is used to train the networks. The narrow aperture dimension calculated using artificial neural networks is used in the optimum gain pyramidal horn design. The computed gains of the designed pyramidal horns are in very good agreement with the desired gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Love AW (1976) Electromagnetic horn antennas. IEEE Press, New York

  2. Balanis CA (1982) Antenna theory: Analysis and design. John Wiley, New York

    Google Scholar 

  3. Hawkins DC (1992) Improvements to synthesis of waveguide horns. Electron Lett 28:879–881

    Google Scholar 

  4. Selvan KT (1999) Accurate design method for optimum gain pyramidal horns. Electron Lett 35:249–250

    Article  Google Scholar 

  5. Guney K (2001) Improved design method for optimum gain pyramidal horns. Int J RF Microwave Computer-Aided Eng 11:188–193

    Google Scholar 

  6. Guney K (2001) Simple design method for optimum gain pyramidal horns. AEU Int J Electron Commun 55:205–208

    Google Scholar 

  7. Guney K (2001) A new design method for optimum gain pyramidal horns. Electromagnetics 21:497–505

    Article  Google Scholar 

  8. Guney K, Hancer H (2003) Improved formulas for narrow and wide aperture dimensions of optimum gain pyramidal horn. Int J RF Microwave Computer-Aided Eng 13:239–245

    Google Scholar 

  9. Haykin S (1994) Neural networks: A comprehensive foundation. Macmillan College, New York

    Google Scholar 

  10. Zhang QJ, Gupta KC (2000) Neural networks for RF and microwave design. Artech House, Boston, MA

  11. Christodoulou CG, Georgiopoulos M (2001) Application of neural networks in electromagnetics. Artech House, MA

  12. Sagiroglu S, Guney K (1997) Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks. Microwave Opt Technol Lett 14:89–93

    Article  Google Scholar 

  13. Sagiroglu S, Guney K, Erler M (1998) Resonant frequency calculation for circular microstrip antennas using artificial neural networks. Int J RF Microwave Computer-Aided Eng 8:270–277

    Google Scholar 

  14. Sagiroglu S, Guney K, Erler M (1999) Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons. Int J RF Microwave Computer-Aided Eng 9:277–286

    Google Scholar 

  15. Karaboga D, Güney K, Sagiroglu S, Erler M (1999) Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc Microwaves, Antennas Propag H 146:155–159

    Google Scholar 

  16. Guney K, Erler M, Sagiroglu S (2000) Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20:387–400

    Article  Google Scholar 

  17. Guney K, Sagiroglu S, Erler M (2001) Comparison of neural networks for resonant frequency computation of electrically thin and thick rectangular microstrip antennas. J Electromagn Waves Applic 15:1121–1145

    Google Scholar 

  18. Guney K, Sagiroglu S, Erler M (2002) Design of rectangular microstrip antennas with the use of artificial neural networks. Neural Network World 4:361–370

    Google Scholar 

  19. Guney K, Sagiroglu S, Erler M (2002) Generalized neural method to determine resonant frequencies of various microstrip antennas. Int J RF Microwave Computer-Aided Eng 12:131–139

    Google Scholar 

  20. Yildiz C, Gultekin SS, Guney K, Sagiroglu S (2002) Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor. AEU Int J Electron Commun 56:396–406

    Google Scholar 

  21. Guney K, Sarikaya N (2003) Artificial neural networks for calculating the input resistance of circular microstrip antennas. Microwave Opt Technol Lett 37:107–111

    Article  Google Scholar 

  22. Maybell MJ, Simon PS (1993) Pyramidal horn gain calculation with improved accuracy. IEEE Trans Antennas Propagat 41:884–889

    Article  Google Scholar 

  23. Schelkunoff SA (1943) Electromagnetic waves. Van Nostrand Rheinhold, New York

  24. Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  25. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Google Scholar 

  26. Hagan MT, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Networks 5:989–993

    Article  Google Scholar 

  27. Standardization of Electronic Industry Association (EIA) (www.eia.org) and Standardization of International Electrotechnical Commission (IEC) (www.iec.ch)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Guney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guney, K., Sarikaya, N. Artificial neural networks for the narrow aperture dimension calculation of optimum gain pyramidal horns. Electr Eng 86, 157–163 (2004). https://doi.org/10.1007/s00202-003-0197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-003-0197-z

Keywords

Navigation