Skip to main content
Log in

Determination of a type of permutation binomials and trinomials

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let \({\mathbb {F}}_q\) denote the finite field of order q. In this paper, we determine certain permutation binomials and permutation trinomials of the form \(x^{r}h(x^{q+1})\) over \(\mathbb {F}_{q^2}\). Some of them are generalizations of known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassalygo, L.A., Zinoviev, V.A.: Permutation and complete permutation polynomials. Finite Fields Appl. 33, 198–211 (2015)

    Article  MathSciNet  Google Scholar 

  2. Dickson, L.E.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, part I. Ann. Math. 11, 65–120 (1896–1897)

    Article  MathSciNet  Google Scholar 

  3. Ding, C., Helleseth, T.: Optimal ternary cyclic codes from monomials. IEEE Trans. Inf. Theory 59, 5898–5904 (2013)

    Article  MathSciNet  Google Scholar 

  4. Ding, C., Yuan, J.: A family of skew Hadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006)

    Article  MathSciNet  Google Scholar 

  5. Fernando, N., Hou, X., Lappano, S.D.: Permutation polynomials over finite fields involving \(x+x^q+\dots +x^{q^{a-1}}\). Discrete Math. 315–316, 173–184 (2014)

    Article  Google Scholar 

  6. Gupta, R., Sharma, R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016)

    Article  MathSciNet  Google Scholar 

  7. Gupta, R., Sharma, R.K.: Further results on permutation polynomials of the form \((x^{p^m}-x+\delta )^s+x\) over \(\mathbb{F}_{p^{2m}}\). Finite Fields Appl. 50, 196–208 (2018)

    Article  MathSciNet  Google Scholar 

  8. Hou, X.: A survey of permutation binomials and trinomials over finite fields. In: Proceedings of the 11th International Conference on Finite Fields and Their Applications, Contemp. Math., Magdeburg, Germany, July 2013, vol. 632, pp. 177–191. AMS (2015)

  9. Hou, X.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015)

    Article  MathSciNet  Google Scholar 

  10. Hou, X.: Determination of a type of permutation trinomials over finite fields. Acta Arith. 166, 253–278 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hou, X.: Determination of a type of permutation trinomials over finite fields II. Finite Fields Appl. 35, 16–35 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hou, X., Lappano, S.D.: Determination of a type of permutation binomials over finite fields. J. Number Theory 147, 14–23 (2015)

    Article  MathSciNet  Google Scholar 

  13. Laigle-Chapuy, Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)

    Article  MathSciNet  Google Scholar 

  14. Li, J., Chandler, D.B., Xiang, Q.: Permutation polynomials of degree \(6\) or \(7\) over finite fields of characterstic \(2\). Finite Fields Appl. 16, 406–419 (2010)

    Article  MathSciNet  Google Scholar 

  15. Li, N., Helleseth, T., Tang, X.: Further results on a class of permutation polynomials over finite fields. Finite Fields Appl. 22, 16–23 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lidl, R., Mullen, W.B.: Permutation Polynomials in RSA-Cryptosystems. Advances in Cryptology, pp. 293–301. Plenum, New York (1984)

    Google Scholar 

  17. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  18. Marcos, J.E.: Some permutation polynomials over finite fields. Appl. Algebra Eng. Commun. Comput. 26, 465–474 (2015)

    Article  MathSciNet  Google Scholar 

  19. Schwenk, J., Huber, K.: Public key encryption and digital signatures based on permutation polynomials. Electron. Lett. 34, 759–760 (1998)

    Article  Google Scholar 

  20. Shallue, C.J., Wanless, I.M.: Permutation polynomials and orthomorphism polynomials of degree six. Finite Fields Appl. 20, 84–92 (2013)

    Article  MathSciNet  Google Scholar 

  21. Wang, Q.: Cyclotomy and permutation polynomials of large indices. Finite Fields Appl. 22, 57–69 (2013)

    Article  MathSciNet  Google Scholar 

  22. Yuan, P., Ding, C.: Further results on permutation polynomials over finite fields. Finite Fields Appl. 27, 88–103 (2014)

    Article  MathSciNet  Google Scholar 

  23. Yuan, P., Ding, C.: Permutation polynomials of the form \(L(x)+S_{2k}^a+S_{2k}^b\) over \(\mathbb{F}_{q^{3k}}\). Finite Fields Appl. 29, 106–117 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zieve, M.E.: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4, 851–857 (2008)

    Article  MathSciNet  Google Scholar 

  25. Zieve, M.E.: Permutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal Latin squares. arXiv:1312.1325

Download references

Acknowledgements

The authors gratefully acknowledge the valuable suggestions from the anonymous referees which improved the quality and presentation of the paper. The first author is ConsenSys Block Chain Chair Professor. He wants to thank the CosenSys AG for the same. The second author wants to thank for its support, CSIR, New Delhi, Govt. of India, Grant No. F.No. 09/086(1135)/2012-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We append here the effectively computable sets mentioned in Sect. 4. The computations to obtain these sets are carried out with MAGMA online.

1.1 Computed set for Theorem 4.7

For \(q=5\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if either \(a=\pm 1\) and \(b^2=\pm 2\), or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{5^2}\) given by \(x^2+x+2\) and \((k,l) \in S_1\) are pairs of positive integers modulo \(24\}\) where \(S_1\) is given by

$$\begin{aligned} S_1= & {} \{(1,9),(1,21),(3,3),(3,9),(3,15),(3,21),(4,3),(4,15), (5,9),(5,21),\\&\;(6,3), (6,9),(6,15),(6,21),(8,9),(8,21),(13,3),(13,15),(15,3),(15,9),\\&\; (15,15),(15,21), (16,9),(16,21),(17,3),(17,15),(18,3),(18,9),(18,15),\\&\; (18,21),(20,3),(20,15)\}. \end{aligned}$$

1.2 Computed set for Theorem 4.8

For \(q=7\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if the conditions of Theorem 4.8(i) or Theorem 4.8(iv) holds, or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{7^2}\) given by \(x^2+x+3\) and \((k,l) \in S_2 \cup S_3\) are pairs of positive integers modulo \(48\}\) where \(S_2\) and \(S_3\) are given by

$$\begin{aligned} S_2= & {} \{(2,24),(2,48),(4,21),(4,45),(6,1),(6,25),(10,15),(10,39),(12,19),\\&\;(12,43),(14,24),(14,48),(18,8),(18,32),(20,5),(20,29),(22,9),(22,33),\\&\;(26,23),(26,47),(28,3),(28,27),(30,8),(30,32),(34,16),(34,40),\\&\;(36,13),(36,37),(38,17),(38,41),(42,7),(42,31),(44,11),\\&\;(44,35),(46,16),(46,40)\}\\ S_3= & {} \{(2,1),(2,18),(2,25),(2,42),(6,13),(6,21),(6,37),(6,45),(8,3),\\&\;(8,21), (8,27),(8,45),(9,16),(9,40),(10,3),(10,11),(10,27),\\&\;(10,35),(11,18), (11,20),(11,42),(11,44),(13,12),(13,22),(13,36),\\&\;(13,46),(14,6),(14,7), (14,30),(14,31),(15,16),(15,40),(18,2),\\&\;(18,9),(18,26),(18,33),(22,5), (22,21),(22,29),(22,45),(24,5),\\&\;(24,11),(24,29),(24,35),(25,24),(25,48),(26,11),(26,19),(26,35),\\&\;(26,43),(27,2),(27,4),(27,26),(27,28),(29,6), (29,20),(29,30),\\&\;(29,44),(30,14),(30,15),(30,38),(30,39),(31,24),(31,48), (34,10),\\&\;(34,17),(34,34),(34,41),(38,5),(38,13),(38,29),(38,37),(40,13),\\&\;(40,19),(40,37),(40,43),(41,8),(41,32),(42,3),(42,19),(42,27),\\&\;(42,43), (43,10),(43,12),(43,34),(43,36),(45,4),(45,14),(45,28),\\&\;(45,38),(46,22), (46,23),(46,46),(46,47),(47,8),(47,32)\}. \end{aligned}$$

For \(q=13\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if the conditions of Theorem 4.8(i) or Theorem 4.8(iv) holds, or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{13^2}\) given by \(x^2+x+2\) and \((k,l) \in S_4\) are pairs of positive integers modulo \(168\}\) where \(S_4\) is given by

$$\begin{aligned} S_4= & {} \{(2,42),(2,126),(3,82),(3,166),(6,48),(6,68),(6,132),(6,152),\\&\;(8,48), (8,132),(10,71),(10,155),(11,44),(11,128),(12,81),(12,165),\\&\;(14,49), (14,133),(16,59),(16,143),(18,27),(18,111),(20,78),(20,162),\\&\;(22,8), (22,16),(22,92),(22,100),(26,42),(26,126),(30,56),(30,140),\\&\;(31,12), (31,96),(34,62),(34,82),(34,146),(34,166),(36,62),(36,146),\\&\;(38,1), (38,85),(39,58),(39,142),(40,11),(40,95),(42,63),(42,147),\\&\;(44,73), (44,157),(46,41),(46,125),(48,8),(48,92),(50,22),(50,30),\\&\;(50,106), (50,114),(54,56),(54,140),(58,70),(58,154),(59,26),(59,110),\\&\;(62,12), (62,76),(62,96),(62,160),(64,76),(64,160),(66,15),(66,99),\\&\;(67,72),(67,156),(68,25),(68,109),(70,77),(70,161),(72,3),(72,87),\\&\;(74,55), (74,139),(76,22),(76,106),(78,36),(78,44),(78,120),(78,128),\\&\;(82,70), (82,154),(86,168),(86,84),(87,40),(87,124),(90,6),(90,26),\\&\;(90,90), (90,110),(92,6),(92,90),(94,29),(94,113),(95,2),(95,86),\\&\;(96,39), (96,123),(98,7),(98,91),(100,17),(100,101),(102,69),\\&\;(102,153),(104,36), (104,120),(106,50),(106,58),(106,134),\\&\;(106,142),(110,168),(110,84), (114,14),(114,98),(115,54),(115,138),\\&\;(118,20),(118,40),(118,104), (118,124),(120,20),(120,104),(122,43),\\&\;(122,127),(123,16),(123,100), (124,53),(124,137),(126,21),(126,105),\\&\;(128,31),(128,115),(130,83), (130,167),(132,50),(132,134),(134,64),\\&\;(134,72),(134,148),(134,156), (138,14),(138,98),(142,28),(142,112),\\&\;(143,68),(143,152),(146,34), (146,54),(146,118),(146,138),(148,34),\\&\;(148,118),(150,57),(150,141),(151,30),(151,114),(152,67),(152,151),\\&\;(154,35),(154,119),(156,45), (156,129),(158,13),(158,97),(160,64),\\&\;(160,148),(162,2),(162,78), (162,86),(162,162),(166,28),(166,112)\}. \end{aligned}$$

1.3 Computed set for Theorem 4.11

For \(q=8\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if the conditions of Theorem 4.11(iii) holds or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{2^6}\) given by \(x^6+x+1\) and \((k,l) \in S_5\) are pairs of positive integers modulo \(63\}\) where \(S_5=T_1 \cup T_2 \cup T_3 \cup T_4\), and \(T_i\) for \(1\le i \le 4\) are given by

$$\begin{aligned} T_1= & {} \{(3,54),(6,45),(12,27),(15,18),(21,63),(24,54),(30,36),(33,27),\\&\;(39,9),(42,63),(48,45),(51,36)(57,18),(60,9) \},\\ T_2= & {} \{(1,58),(2,53),(4,43),(5,47),(7,10),(8,23),(10,31),(11,26),\\&\;(13,16),(14,20), (16,46),(17,59),(19,4),(20,62),(22,52),(23,56),\\&\;(25,19),(26,32),(28,40),(29,35), (31,25),(32,29),(34,55),(35,5),\\&\;(37,13),(38,8),(40,61),(41,2),(43,28),(44,41),(46,49),(47,44),\\&\;(49,34),(50,38),(52,1),(53,14),(55,22),(56,17),(58,7),(59,11),\\&\;(61,37),(62,50)\},\\ T_3= & {} \{(1,7),(2,14),(4,28),(5,53),(7,13),(8,56),(10,43),(11,50),(13,1),\\&\;(14,26),(16,49), (17,29),(19,16),(20,23),(22,37),(23,62),(25,22),\\&\;(26,2),(28,52),(29,59),(31,10),(32,35),(34,58),(35,38),(37,25),\\&\;(38,32),(40,46),(41,8),(43,31),(44,11),(46,61), (47,5),(49,19),\\&\;(50,44),(52,4),(53,47),(55,34),(56,41),(58,55),\\&\;(59,17),(61,40), (62,20)\} \end{aligned}$$

and

$$\begin{aligned} T_4= & {} \{(9,15),(9,57),(18,30),(18,51),(27,3),(27,24),(36,39),\\&\quad (36,60),(45,12),(45,33), (54,6),(54,48), (63,21),(63,42)\}. \end{aligned}$$

For \(q=16\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if the conditions of Theorem 4.11(iii) holds or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{2^8}\) given by \(x^8+x^4+x^3+x^2+1\) and \((k,l) \in S_6\) are pairs of positive integers modulo \(255\}\) where \(S_6\) is given by

$$\begin{aligned} S_6= & {} \{(3,228),(5,91),(6,201),(7,158),(10,182),(11,241),(12,147),\\&\;(14,61),(20,109), (22,227),(23,82),(24,39),(27,63),(28,122),(29,28),\\&\;(31,197),(37,245),(39,108), (40,218),(41,175),(44,199),(45,3),(46,164),\\&\;(48,78),(54,126),(56,244),(57,99), (58,56),(61,80),(62,139),(63,45),\\&\;(65,214),(71,7),(73,125),(74,235),(75,192), (78,216),(79,20),(80,181),\\&\;(82,95),(88,143),(90,6),(91,116),(92,73),(95,97), (96,156),(97,62),\\&\;(99,231),(105,24),(107,142),(108,252),(109,209),(112,233), (113,37),\\&\;(114,198),(116,112),(122,160),(124,23),(125,133),(126,90),(129,114),\\&\;(130,173),(131,79),(133,248),(139,41),(141,159),(142,14),(143,226),\\&\;(146,250), (147,54),(148,215),(150,129),(156,177),(158,40),(159,150),\\&\;(160,107),(163,131), (164,190),(165,96),(167,10),(173,58),(175,176),\\&\;(176,31),(177,243),(180,12),(181,71),(182,232),(184,146),(190,194),\\&\;(192,57),(193,167),(194,124),(197,148), (198,207),(199,113),(201,27),\\&\;(207,75),(209,193),(210,48),(211,5),(214,29), (215,88),(216,249),\\&\;(218,163),(224,211),(226,74),(227,184),(228,141),(231,165), (232,224),\\&\;(233,130),(235,44),(241,92),(243,210),(244,65),(245,22),(248,46),\\&\;(249,105),(250,11),(252,180)\}. \end{aligned}$$

For \(q=32\), the polynomial \(f(x) = ax + bx^{q+2} + x^{2q+3}\) permutes \(\mathbb {F}_{q^2}\) if and only if the conditions of Theorem 4.11(iii) holds or \((a,b)\in \{(\alpha ^k,\alpha ^l) ~| ~\alpha \) is a primitive element of \(\mathbb {F}_{2^{10}}\) given by \(x^{10}+x^4+x^3+x^2+1\) and \((k,l) \in S_7\) are pairs of positive integers modulo \(1023\}\) where \(S_7\) is given by

$$\begin{aligned} S_7= & {} \{(11,176),(22,352),(44,704),(55,880),(77,209),(88,385),(110,737),\\&\;(121,913),(143,242),(154,418),(176,770),(187,946),(209,275),\\&\;(220,451),(242,803),(253,979),(275,308),(286,484),(308,836),\\&\;(319,1012),(341,341),(352,517), (374,869),(385,22),(407,374),\\&\;(418,550),(440,902),(451,55),(473,407), (484,583),(506,935),\\&\;(517,88),(539,440),(550,616),(572,968),(583,121), (605,473),\\&\;(616,649),(638,1001),(649,154),(671,506),(682,682),(704,11), \\&\;(715,187),(737,539),(748,715),(770,44),(781,220),(803,572),\\&\;(814,748), (836,77),(847,253),(869,605),(880,781),(902,110),\\&\;(913,286),(935,638), (946,814),(968,143),\\&\;(979,319),(1001,671),(1012,847)\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.K., Gupta, R. Determination of a type of permutation binomials and trinomials. AAECC 31, 65–86 (2020). https://doi.org/10.1007/s00200-019-00394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00394-y

Keywords

Mathematics Subject Classification

Navigation