Skip to main content
Log in

2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We present a package of parallel preconditioners which implements one-level and two-level Domain Decomposition algorithms on the top of the PSBLAS library for sparse matrix computations. The package, named 2LEV-D2P4 (Two-LEVel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), currently includes various versions of additive Schwarz preconditioners that are combined with a coarse-level correction to obtain two-level preconditioners. A pure algebraic formulation of the preconditioners is considered. 2LEV-D2P4 has been written in Fortran~95, exploiting features such as abstract data type creation, functional overloading and dynamic memory management, while providing a smooth path towards the integration in legacy application codes. The package, used with Krylov solvers implemented in PSBLAS, has been tested on large-scale linear systems arising from model problems and real applications, showing its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank R.E. and Douglas C.C. (1993). SMMP: sparse matrix multiplication package. Adv. Comput. Math. 1: 127–137

    Article  MATH  Google Scholar 

  2. Bella G., Filippone S., De Maio A. and Testa M. (2005). A simulation model for forest fires. In: Dongarra, K.M.J. and Wasniewski, J. (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 546–553. Springer, Heidelberg

    Google Scholar 

  3. Brezina M. and Vaněk P. (1999). A black-box iterative solver based on a two-level Schwarz method. Computing 63: 233–263

    Article  MATH  Google Scholar 

  4. Buttari A., D’Ambra P., Filippone S. and Serafino D. (2005). Extending PSBLAS to build parallel schwarz preconditioners. In: Dongarra, K.M.J. and Wasniewski, J (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 593–602. Springer, Heidelberg

    Google Scholar 

  5. Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: 2LEV-D2P4 User’s Guide (in preparation)

  6. Cai X.C. and Saad Y. (1996). Overlapping domain decomposition algorithms for general sparse matrices. Num. Linear Algebra Appl. 3(3): 221–237

    Article  MATH  Google Scholar 

  7. Cai X.C. and Sarkis M. (1999). A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2): 792–797

    Article  MATH  Google Scholar 

  8. Cai X.C. and Widlund O.B. (1992). Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1): 243–258

    Article  MATH  Google Scholar 

  9. Chan T. and Mathew T. (1994). Domain decomposition algorithms. In: Iserles, A. (eds) Acta Numerica, pp 61–143. Cambridge University Press, Cambridge

    Google Scholar 

  10. D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel two-level Schwarz preconditioners. Appl. Num. Math. (to appear) (2007)

  11. Davis, T.: University of Florida sparse matrix collection home page. http://www.cise.ufl.edu/research/sparse/matrices

  12. Davis T.A. (2004). Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method with a column pre-ordering trategy. ACM Trans. Math. Softw. 30: 196–199

    Article  MATH  Google Scholar 

  13. Dongarra, J., Whaley, R.: A user’s guide to the BLACS v1.0. LAPACK working note #94 CS-95-281, University of Tennessee (1995) http://www.netlib.org/lapack/lawns

  14. Duff I., Heroux M. and Pozo R. (2002). An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2): 239–267

    Article  MATH  Google Scholar 

  15. Duff I., Marrone M., Radicati G. and Vittoli C. (1997). Level 3 basic linear algebra subprograms for sparse matrices: a user level interface. ACM Trans. Math. Softw. 23(3): 379–401

    Article  MATH  Google Scholar 

  16. Filippone S. and Colajanni M. (2000). PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4): 527–550

    Article  Google Scholar 

  17. Filippone S., D’Ambra P. and Colajanni M. (2002). Using a parallel library of sparse linear algebra in a fluid dynamics applications code on linux clusters. In: Joubert, G., Murli, A., Peters, F., and Vanneschi, M. (eds) Proceedings of Parallel Computing—Advances and Current Issues, pp 441–448. Imperial College Press, London

    Google Scholar 

  18. Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J., Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Pawlowski R.P., Phipps E.T., Salinger A.G., Thornquist H.K., Tuminaro R.S., Willenbring J.M., Williams A. and Stanley K.S. (2005). An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3): 397–423

    Article  Google Scholar 

  19. Karypis G. and Kumar V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1): 359–392

    Article  MATH  Google Scholar 

  20. Li X.S. and Demmel J.W. (2003). SuperLU-DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2): 110–140

    Article  MATH  Google Scholar 

  21. Smith B., Bjorstad P. and Gropp W. (1996). Domain decomposition: parallel multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Snir M., Otto S., Huss-Lederman S., Walker D. and Dongarra J. (1998). MPI: The Complete Reference, The MPI Core, vol. 1, 2nd edn. MIT, Cambridge

    Google Scholar 

  23. Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: Donnelley, J. (ed.) Proceedings of SuperComputing 2000. Dallas, (2000)

  24. Vaněk P., Mandel J. and Brezina M. (1996). Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56: 179–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasqua D’Ambra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttari, A., D’Ambra, P., di Serafino, D. et al. 2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications. AAECC 18, 223–239 (2007). https://doi.org/10.1007/s00200-007-0035-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-007-0035-z

Keywords

Navigation