Skip to main content
Log in

Mixed extensions of decision problems under uncertainty

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

In a decision problem under uncertainty, a decision maker considers a set of alternative actions whose consequences depend on uncertain factors beyond his control. Following Luce and Raiffa (Games and decisions: introduction and critical survey. Wiley, New York, 1957), we adopt a natural representation of such a situation which takes as primitives a set of conceivable actions A, a set of states S and a consequence function \(\rho {:}\,A\times S\rightarrow C\). Each action induces a map from states to consequences, a Savage act, and each mixed action induces a map from states to probability distributions over consequences, an Anscombe–Aumann act. Under an axiom of consequentialism, preferences over pure or mixed actions yield corresponding preferences over the induced acts. This observation allows us to relate the Luce–Raiffa description of a decision problem to the most common framework of modern decision theory which directly takes as primitive a preference relation over the set of all Anscombe–Aumann acts. The key advantage of the latter framework is the possibility of applying powerful convex analysis techniques as in the seminal work of Schmeidler (Econometrica 57:571–587, 1989) and the vast literature that followed. This paper shows that we can maintain the mathematical convenience of the Anscombe–Aumann framework within a description of decision problems which is closer to many applications and experiments. We argue that our framework is more expressive as it allows us to be both explicit and parsimonious about the assumed richness of the set of conceivable actions, and to directly capture preference for randomization as an expression of uncertainty aversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Gilboa and Marinacci (2013) for a recent survey.

  2. Referred to as horse lotteries by Anscombe and Aumann (1963) and Anscombe–Aumann acts in the subsequent literature.

  3. Formally, the set of all finitely supported probability distributions on C.

  4. This is the framework they describe on p. 276. They later replace consequences \(c_{ij}\) with their utilities \(u_{ij}\).

  5. This relation is hinted at by Kreps (1988) in Chapter 7, where Savage acts (functions \(f:S\rightarrow C\)) are randomized. See the concluding Sect. 7 for details.

  6. In Eq. (1), \(\rho \left( a_{i},s_{j}\right) =c_{ij}\) for each action \(a_{i}\in A\) and each state \(s_{j}\in S\).

  7. In other words, a decision problem is characterized by the set \(\mathcal {A}\) of actions that are available to the decision maker in a given choice situation.

  8. This makes the conceptual status of subjective beliefs in games problematic from a decision theoretic perspective (Mariotti 1995).

  9. By contrast, normal-form games also include a profile \(\left( u_{i}\right) _{i\in I}\) of von Neumann–Morgenstern utility functions on C.

  10. Marschak and Radner (1972, Ch. 1) call them essentially equivalent.

  11. See Swinkels (1989) for a detailed distinction among the various reduced forms of a game.

  12. In particular, the decision framework is reduced if and only if there are no redundant assets, that is, the rank of the Arrow–Debreu tableau is equal to the number of marketed assets. See e.g., LeRoy and Werner (2000, Ch. 1) or Cerny (2009, Ch. 1).

  13. This equivalence class can be seen geometrically as a hyperplane.

  14. According to the Office of the Comptroller of the Currency (1999) a derivative is ‘a financial contract whose value is derived from the performance of assets, interest rates, currency exchange rates, or indexes.’

  15. A transitive binary relation which is also reflexive is called preorder.

  16. That is, for every \(f{:}\,S\rightarrow C\) there exists \(a\in A\) such that \(\rho _{a}=f\). Formally, Savage assumes \(\left( A,S,C,\rho \right) =\left( C^{S},S,C,\varrho \right) \) where \(\varrho \left( f,s\right) =f\left( s\right) \) is the evaluation pairing. In this decision framework, the number of bets is \(\left| C\right| +\left| C\right| \left( \left| C\right| -1\right) \left( 2^{\left| S\right| -1}-1\right) \) while the number of acts is \(\left| C\right| ^{\left| S\right| }\). With 10 states and 10 consequences there are forty-six thousand bets and ten billion acts.

  17. \({\mathbb {R}}_{+}^{X}\) is the set of functions from X to \({\mathbb {R}}_{+}\). With the usual abuse of notation we denote a probability distribution on X and the probability measure it induces on the set of all parts of X by the same Greek letter.

  18. We refer to Luce and Raiffa (1957) and Anscombe and Aumann (1963) for a discussion of this distinction.

  19. One should distinguish between mixed decision rules and behavioral decision rules. But, since we are considering finite state spaces, the distinction is immaterial because a version of Kuhn (1953) equivalence theorem holds.

  20. See again, Gilboa and Marinacci (2013).

  21. Formally, the embedding is \(\left[ \alpha \right] \mapsto \rho _{\alpha }\), where \(\left[ \alpha \right] \) is the \(\approx \)-equivalence class of \(\alpha \).

  22. For example, (13) below is reduced, and the mixed actions \(\alpha =\frac{1}{2}\delta _{a_{1}}+\frac{1}{2}\delta _{a_{2}}\) and \(\beta =\frac{1}{2} \delta _{b_{1}}+\frac{1}{2}\delta _{b_{2}}\) are clearly distinct (they have disjoint support), but \(\rho _{\alpha }=\rho _{\beta }\), so that they are realization equivalent.

  23. Note, reduction guarantees that \(\epsilon \) is well defined. Without reduction one should consider realization equivalence classes of mixed actions with support in the set of all sure actions. This is clearly possible, but leads to a notational cost which is not justified by the conceptual gain since mixed consequentialism will be maintained (see Proposition 3).

  24. In fact, \(\rho _{\epsilon \left( \gamma \right) } \equiv \gamma \) as shown in Lemma 1 of “Appendix 2”.

  25. The same happens in the Anscombe–Aumann framework where one writes \(\gamma \) not only to denote \(\gamma \in \Delta \left( C\right) \), but also the constant act \(\gamma _{S}\equiv \gamma \) (and \(\gamma \succsim \zeta \) means \(\gamma _{S}\succsim \zeta _{S}\) since the primitive preferences \(\succsim \) are defined on \(\Delta \left( C\right) ^{S}\)). In this case, the role of \(\epsilon \) is played by the embedding \(\gamma \hookrightarrow \gamma _{S}\) of random consequences onto constant Anscombe–Aumann acts.

  26. Nevertheless, we remark that this is not a requirement of the Anscombe–Aumann framework, but rather a preferential assumption; in fact, Proposition 2 holds without any assumption on preferences.

  27. As Luce and Raiffa (1957, p. 279) discuss, the choice of \(-u\) as a payoff function for nature is best seen as purely formal.

  28. Formally, \(\alpha \geqslant _{u}\beta \) and \(\beta \geqslant _{u}\alpha \) imply \(\alpha \sim \beta \).

  29. See “Appendix 1” for a list of the most common axioms in the Anscombe–Aumann framework.

  30. One should write \(V_{u}\) and \(v_{u}\) instead of V and v since these functions obviously depend on u. The subscripts are omitted since u is cardinally unique.

  31. We say that \(\alpha \left( a\right) \mu \left( s\right) \) is hybrid because it is the product of a chance \(\alpha \left( a\right) \) and a belief \(\mu \left( s\right) \). Likewise, we use the terms payoff for \(u\left( \rho \left( a,s\right) \right) \), expected payoff for the (objective) average \({\sum \nolimits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) \) of payoffs, and expected utility for the (subjective) average \({\sum \nolimits _{s\in S}\mu }\left( s\right) {\sum \nolimits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) \) of expected payoffs.

  32. Again one should write \(r_{u}\) instead of r and again the subscript is omitted because of the cardinal uniqueness of u.

  33. A fair coin here is just a random device generating two outcomes with the same 1/2 chance. The original paper of Ellsberg models it as another urn that the decision maker knows to contain 50 white balls and 50 black balls.

  34. If the color of the drawn ball is white (resp. black), then the probability of winning by choosing this gamble is the chance that the coin toss assigns to betting on white (resp. black), and this chance is 1 / 2 since the coin is fair.

  35. Note that, under the assumptions of Theorem 3, \(a_{1}\sim a_{2}\) implies \(\mu \left( B\right) =\mu \left( W\right) =1/2\).

  36. See, again, Luce and Raiffa (1957, p. 279) and the discussion of Klibanoff (1992, p. 6).

  37. See Dominiak and Schnedler (2011) for a recent perspective on uncertainty attitudes and preference for randomization.

  38. Indeed, expected utility preferences satisfy it with indifference \(\sim \) instead of weak preference \(\succsim \).

  39. See Strzalecki (2011) for an axiomatization.

  40. See Ghirardato et al. (2005).

  41. Building on Gilboa et al. (2010), another way to obtain maxmin expected utility is by replacing ‘extreme caution’ in Theorem 2 with ‘default to certainty’ with respect to the unambiguous preference

    $$\begin{aligned} \alpha \succsim ^{*}\beta \iff q\alpha +(1-q)\eta \succsim q\beta +(1-q)\eta \quad \forall q\in \left[ 0,1\right] \text { and }\forall \eta \in \Delta \left( A\right) . \end{aligned}$$

    See Ghirardato et al. (2004).

  42. As suggested by a referee, even on a purely theoretical level, realization equivalence appears to be very convincing when one considers a framework consisting of unambiguous sets of states, actions, and consequences. If there is ambiguity or a degree of unawareness regarding these primitive sets, it is no longer clear whether realization equivalence can be maintained as a prerequisite of consequentialism (see e.g., Karni and Viero 2014).

  43. Again, we thank a referee for this observation.

  44. We say ‘interpreted’ since this timeline and the timed disclosure of information are unmodeled. In principle, one could think of the decision maker committing to f and receiving the outcome of the resulting process.

  45. Again the timeline and the timed disclosure of information are unmodeled. In principle, one could think that the decision maker commits to \(\alpha \) and receives the outcome of the resulting process.

  46. See Kuzmics (2012) on this issue.

  47. Seo (2009) studies the consequences of weakening this assumption.

  48. Specifically, \(\succsim _{C}=\left\{ \left( c,d\right) \in C\times C:a_{c}\succsim a_{d}\text { for some/all }a_{c},a_{d}\in A\text { such that }\rho _{a_{c}}\equiv c,\rho _{a_{d} }\equiv d\right\} \).

  49. In fact, \(\left\{ \left( f,g\right) \mid \alpha \succsim \beta ,\forall \alpha ,\beta \in \Delta \left( A\right) :\rho _{\alpha }=f\text { and }\rho _{\beta }=g\right\} =\left\{ \left( f,g\right) \mid \exists \alpha ,\beta \in \Delta \left( A\right) :\rho _{\alpha }\right. \left. =f\text {, }\rho _{\beta }=g\text {, and }\alpha \succsim \beta \right\} \subseteq \mathcal {F}\times \mathcal {F}\) and the relation \(\succsim _{\digamma }\) they define on \(\mathcal {F}\) is such that, if \(\alpha ,\beta \in \Delta \left( A\right) \) then \(\alpha \succsim \beta \iff \rho _{\alpha }\succsim _{\digamma }\rho _{\beta }\).

  50. Notice that V is well defined since whenever \(\alpha _{\ell }^{\prime },\alpha _{\ell } ^{\prime \prime }\in \Delta _{\ell }\left( A\right) \) are such that \(\epsilon \left( \alpha _{\ell }^{\prime }\right) \sim \alpha \) and \(\epsilon \left( \alpha _{\ell }^{\prime \prime }\right) \sim \alpha \), then \(\alpha _{\ell }^{\prime }\sim _{\Delta \left( C\right) }\alpha _{\ell }^{\prime \prime }\) and \({\sum \nolimits _{c\in C}}\alpha _{\ell }^{\prime }\left( c\right) u\left( c\right) ={\sum \nolimits _{c\in C}}\alpha _{\ell }^{\prime \prime }\left( c\right) u\left( c\right) \). Also observe that if \(\alpha =\epsilon \left( \gamma \right) \in \Delta _{\ell }\left( A\right) \), one can choose \(\alpha _{\ell }=\gamma \) and obtain \(V\left( \epsilon \left( \gamma \right) \right) ={\sum \nolimits _{c\in C}}\gamma \left( c\right) u\left( c\right) ={\mathbb {E}}_{\gamma }\left[ u\right] \).

References

  • Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)

    Article  Google Scholar 

  • Arrow, K.J.: Rational choice functions and orderings. Economica 26, 121–127 (1959)

    Article  Google Scholar 

  • Battigalli, P., Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M.: Mixed Extensions of Decision Problems under Uncertainty, IGIER Working Paper 485. Università Bocconi (2013)

  • Berger, A.: Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer, New York (1985)

    Book  Google Scholar 

  • Cerreia-Vioglio, S.: Maxmin Expected Utility on a Subjective State Space: Convex Preferences under Risk, manuscript. Columbia University (2009)

  • Cerreia-Vioglio, S., Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: Rational preferences under ambiguity. Econ. Theory 48, 341–375 (2011a)

    Article  Google Scholar 

  • Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Uncertainty averse preferences. J. Econ. Theory 146, 1275–1330 (2011b)

    Article  Google Scholar 

  • Cerny, A.: Mathematical Techniques in Finance: Tools for Incomplete Markets, 2nd edn. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  • Debreu, G.: Theory of Value. Wiley, New York (1959)

    Google Scholar 

  • Dekel, E., Lipman, B.L., Rustichini, A.: Representing preferences with a unique subjective state space. Econometrica 69, 891–934 (2001)

    Article  Google Scholar 

  • Dominiak, A., Schnedler, W.: Attitudes toward uncertainty and randomization: an experimental study. Econ. Theory. 48, 289–312 (2011)

  • Eichberger, J., Grant, S., Kelsey, D.: Randomization and Dynamic Consistency. manuscript, University of Exeter (2013)

  • Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)

    Article  Google Scholar 

  • Epstein, L.G., Halevy, Y.: No Two Experiments are Identical. manuscript, University of British Columbia (2014)

  • Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)

    Google Scholar 

  • Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: A subjective spin on roulette wheels. Econometrica 71, 1897–1908 (2003)

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., Marinacci, M.: Certainty independence and the separation of utility and beliefs. J. Econ. Theory 120, 129–136 (2005)

    Article  Google Scholar 

  • Gilboa, I., Maccheroni, F., Marinacci, M., Schmeidler, D.: Objective and subjective rationality in a multiple prior model. Econometrica 78, 755–770 (2010)

    Article  Google Scholar 

  • Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian Paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics: Theory and Applications. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)

    Article  Google Scholar 

  • Glazer, J., Rubinstein, A.: An extensive game as a guide for solving a normal game. J. Econ. Theory 70, 32–42 (1996)

    Article  Google Scholar 

  • Hansen, L.P., Sargent, T.J.: Robust control and model uncertainty. Am. Econ. Rev. 91, 60–66 (2001)

    Article  Google Scholar 

  • Hansen, L.P., Sargent, T.J.: Robustness. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  • Herstein, I.N., Milnor, J.: An axiomatic approach to measurable utility. Econometrica 21, 291–297 (1953)

    Article  Google Scholar 

  • Karni, E., Maccheroni, F., Marinacci, M.: Ambiguity and nonexpected utility. In: Young, P., Zamir, S. (eds.) Handbook of Game Theory IV, pp. 901–948. Elsevier, Amsterdam (2014)

    Google Scholar 

  • Karni, E., Viero, M.L.: Awareness of Unawareness: A Theory of Decision Making in the Face of Ignorance, QED Working Paper 1322, Queen’s University (2014)

  • Klibanoff, P.: Uncertainty, Decision, and Normal Form Games, manuscript. Northwestern University (1992)

  • Kreps, D.M.: A representation theorem for preference for flexibility. Econometrica 47, 565–577 (1979)

    Article  Google Scholar 

  • Kreps, D.M.: Notes on the Theory of Choice. Westview, Boulder (1988)

    Google Scholar 

  • Kuhn, H.W.: Extensive games and the problem of information. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 193–216. Princeton, Princeton University Press (1953)

    Google Scholar 

  • Kuzmics, C.: An Alternative Subjective Expected Utility Representation Theorem, manuscript. Bielefeld University (2012)

  • Lehrer, E., Teper, R.: Extension rules or what would the sage do? Am. Econ. J. Microecon. 6, 5–22 (2014)

    Article  Google Scholar 

  • LeRoy, S.F., Werner, J.: Principles of Financial Economics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. Wiley, New York (1957)

    Google Scholar 

  • Maccheroni, F.: Maxmin under Risk. Econ. Theory 19, 823–831 (2002)

    Article  Google Scholar 

  • Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)

    Article  Google Scholar 

  • Mariotti, M.: Is bayesian rationality compatible with strategic rationality? Econ. J. 105, 1099–1109 (1995)

    Google Scholar 

  • Marschak, J., Radner, R.: Economic Theory of Teams. Yale University Press, New Haven (1972)

    Google Scholar 

  • Milnor, J.: Games against nature. In: Thrall, R.M., Coombs, C.H., Davis, D.L. (eds.) Decision Processes, pp. 49–59. Wiley, New York (1954)

    Google Scholar 

  • Office of the Comptroller of the Currency: Bank Derivatives Report First Quarter, report. U.S, Department of Treasury (1999)

  • Ok, E.A.: Real Analysis with Economic Applications. Princeton University Press, Princeton (2007)

    Google Scholar 

  • Raiffa, H.: Risk, ambiguity, and the savage axioms: comment. Q. J. Econ. 75, 690–694 (1961)

    Article  Google Scholar 

  • Rubinstein, A.: Comments on the interpretation of game theory. Econometrica 59, 909–924 (1991)

    Article  Google Scholar 

  • Saito, K.: Preference for Flexibility and Preference for Randomization under Ambiguity, manuscript. Caltech (2013)

  • Sarin, R., Wakker, P.P.: A single-stage approach to Anscombe and Aumann’s expected utility. Rev. Econ. Stud. 64, 399–409 (1997)

    Article  Google Scholar 

  • Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)

    Google Scholar 

  • Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  Google Scholar 

  • Seo, K.: Ambiguity and second-order belief. Econometrica 77, 1575–1605 (2009)

    Article  Google Scholar 

  • Strzalecki, T.: Axiomatic foundations of multiplier preferences. Econometrica 79, 47–73 (2011)

    Article  Google Scholar 

  • Swinkels, J.: Subgames and the Reduced Normal Form, manuscript. Princeton University (1989)

  • Wakker, P.P.: Prospect Theory: For Risk and Ambiguity. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Wald, A.: Statistical Decision Functions. Wiley, New York (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Maccheroni.

Additional information

We thank Veronica Cappelli, Karin Hendrix Blissitt, Giacomo Lanzani, Sujoy Mukerji, Kelly Gail Strada, and two anonymous referees, and the participants of the NES 20th anniversary conference (Moscow, December 2012) and D-TEA and RUD workshops (Paris, May 2013) for useful comments and suggestions. Simone Cerreia-Vioglio acknowledges the financial support of the European Research Council (advanced grant BRSCDP-TEA), Fabio Maccheroni acknowledges the financial support of the Italian Ministry of Education, Universities, and Research (Grant PRIN 20103S5RN3_005), and Massimo Marinacci acknowledges the financial support of the AXA Research Fund.

Appendices

Appendix 1: Anscombe–Aumann axioms

Here we report the axioms that are usually stated in the Anscombe–Aumann framework. In this section \(\succsim _{\mathcal {F}}\) and \(\succsim _{\mathcal {F}}^{\#}\) are binary relations on a convex subset \(\mathcal {F}\) of \(\Delta \left( C\right) ^{S}\) that contains the set \(\mathcal {C}\simeq \Delta \left( C\right) \) of all constant acts.

Axiom AA.1

(Weak order) \(\succsim _{\mathcal {F}}\) is complete and transitive.

Axiom AA.2

(Risk independence) For all \(\gamma ,\zeta ,\xi \in \mathcal {C}\), \(\gamma \sim _{\mathcal {F}}\zeta \) implies \(\dfrac{1}{2}\gamma +\dfrac{1}{2} \xi \sim _{\mathcal {F}}\dfrac{1}{2}\zeta +\dfrac{1}{2}\xi \).

Axiom AA.3

(Monotonicity) For all \(f,g\in \mathcal {F}\), if \(f(s)\succsim _{\mathcal {F}}g(s)\) for all \(s\in S\), then \(f\succsim _{\mathcal {F}}g\).

Axiom AA.4

(Continuity) For all \(f,g,h\in \mathcal {F}\), \(\left\{ q\in \left[ 0,1\right] :qf+\left( 1-q\right) g\succsim _{\mathcal {F} }h\right\} \) and \(\left\{ q\in \left[ 0,1\right] :h\succsim _{\mathcal {F} }qf+\right. \) \(\left. \left( 1-q\right) g\right\} \) are closed sets.

Axiom AA.5

(Default to certainty) For all \(f\in \mathcal {F}\) and \(\gamma \in \mathcal {C}\), \(f\not \succsim _{\mathcal {F}}^{\#}\gamma \) implies \(\gamma \succ _{\mathcal {F}}f\).

Axiom AA.6

(Independence) For all \(f,g,h\in \mathcal {F}\), \(f\sim _{\mathcal {F}}g\) implies \(\dfrac{1}{2}f+\dfrac{1}{2}h\sim _{\mathcal {F}} \dfrac{1}{2}g+\dfrac{1}{2}h\).

Axiom AA.7

(Non-triviality) There exist \(f,g\in \mathcal {F}\) such that \(f\succ _{\mathcal {F}}g\).

Axiom AA.8

(Uncertainty aversion) For all \(f,g\in \mathcal {F}\) and \(q\in \left( 0,1\right) \), \(f\sim _{\mathcal {F}}g\) implies \(qf+\left( 1-q\right) g\succsim _{\mathcal {F}}f\).

Axiom AA.9

(C-Independence) For all \(f,g\in \mathcal {F}\), \(\gamma \in \mathcal {C}\), and \(q\in \left( 0,1\right] \),

$$\begin{aligned} f\succsim _{\mathcal {F}}g\iff qf+(1-q)\gamma \succsim _{\mathcal {F} }qg+(1-q)\gamma . \end{aligned}$$

Appendix 2: Proofs and related material

Throughout this appendix, if \(\gamma \in \Delta \left( C\right) \) and \(u\in {\mathbb {R}}^{C}\), we indifferently write

$$\begin{aligned} \text {either }{\sum \limits _{c\in C}\gamma }\left( c\right) u\left( c\right) \text { or }{\mathbb {E}}_{{\gamma }}\left[ u\right] \text { or }u\left( \gamma \right) \text {.} \end{aligned}$$

Proof of Proposition 1

  1. 1.

    For each \(a\in A\), \(\rho _{a}=\rho _{a}\) so that \(a\approx a\) and by consequentialism \(a\sim _{A}a\). Therefore \(\succsim _{A}\) is reflexive and transitive, that is, a preorder. Conversely, let \(\left( A,S,C,\rho \right) \) be reduced and \(\succsim _{A}\) be a preorder. For every \(a,b\in A\), \(a\approx b\) implies (because of reduction) \(a=b\), and reflexivity of \(\succsim _{A}\) delivers \(a\sim _{A}b\). Therefore \(\succsim _{A}\) satisfies consequentialism.

  2. 2.

    Let \(c,d\in C\) and \(a_{c},b_{c},a_{d},b_{d}\in A\), not necessarily distinct, be such that

    $$\begin{aligned} \rho \left( a_{c},\cdot \right) =\rho \left( b_{c},\cdot \right) \equiv c\text { and }\rho \left( a_{d},\cdot \right) =\rho \left( b_{d},\cdot \right) \equiv d\text {.} \end{aligned}$$
    (23)

    These sure actions exist since all sure actions are conceivable. By consequentialism, \(\succsim _{A}\) is a preorder and (23) implies \(a_{c}\sim _{A}b_{c}\) and \(a_{d}\sim _{A}b_{d}\). Therefore, by transitivity of \(\succsim _{A}\),

    $$\begin{aligned} a_{c}\succsim _{A}a_{d}\iff b_{c}\succsim _{A}b_{d} \end{aligned}$$

    and \(\succsim _{C}\) is well defined.Footnote 48 Reflexivity and transitivity of \(\succsim _{C}\) follow from reflexivity and transitivity of \(\succsim _{A}\).

  3. 3.

    The proof is similar to the one of the previous point, hence it is left to the reader. \(\square \)

Proof of Proposition 2

  1. 1.

    Fix \(s\in S\). For each \(c\in C\),

    $$\begin{aligned} \rho _{\delta _{a}}\left( c\mid s\right) =\delta _{a}\left( \left\{ b\in A:\rho \left( b,s\right) =c\right\} \right) =\left\{ \begin{array}{ll} 1 &{} \quad c=\rho \left( a,s\right) \\ 0 &{} \quad \text {otherwise} \end{array} \right. =\delta _{\rho \left( a,s\right) }\left( c\right) \end{aligned}$$

    that is \(\rho _{\delta _{a}}\left( s\right) =\delta _{\rho \left( a,s\right) }\). Write x instead of \(\delta _{x}\) if either \(x\in A\) or \(x\in C\), then

    $$\begin{aligned} \digamma \left( a\right) =\digamma \left( \delta _{a}\right) =\left[ \begin{array}{c} \rho _{\delta _{a}}\left( s_{1}\right) \\ \rho _{\delta _{a}}\left( s_{2}\right) \\ \vdots \\ \rho _{\delta _{a}}\left( s_{n}\right) \end{array} \right] =\left[ \begin{array}{c} \delta _{\rho \left( a,s_{1}\right) }\\ \delta _{\rho \left( a,s_{2}\right) }\\ \vdots \\ \delta _{\rho \left( a,s_{n}\right) } \end{array} \right] =\left[ \begin{array}{c} \rho \left( a,s_{1}\right) \\ \rho \left( a,s_{2}\right) \\ \vdots \\ \rho \left( a,s_{n}\right) \end{array} \right] =\rho _{a} \end{aligned}$$

    as desired.

  2. 2.

    Fix \(s\in S\). For each \(c\in C\),

    $$\begin{aligned} \rho _{q\alpha +\left( 1-q\right) \beta }\left( c\mid s\right)&=\left( q\alpha +\left( 1-q\right) \beta \right) \left( \left\{ a\in A:\rho \left( a,s\right) =c\right\} \right) \\&=q\alpha \left( \left\{ a\in A:\rho \left( a,s\right) =c\right\} \right) +\left( 1-q\right) \beta \left( \left\{ a\in A:\rho \left( a,s\right) =c\right\} \right) \\&=q\rho _{\alpha }\left( c\mid s\right) +\left( 1-q\right) \rho _{\beta }\left( c\mid s\right) \end{aligned}$$

    that is, \(\rho _{q\alpha +\left( 1-q\right) \beta }=q\rho _{\alpha }+\left( 1-q\right) \rho _{\beta }\).

  3. 3.

    Let D be an arbitrary nonempty subset of C. Then \(\Delta \left( D\right) \) is convex in \({\mathbb {R}}^{D}\), and its extreme points are the point-masses \(\left\{ \delta _{d}\right\} _{d\in D}\). Therefore \(\Delta \left( D\right) ^{S}\) is convex too. Next we show that its extreme points are the vectors of point-masses. If \(g\in \Delta \left( D\right) ^{S}\) is not extreme there exist \(g^{\prime },g^{\prime \prime }\in \Delta \left( D\right) ^{S}\) with \(g^{\prime }\ne g^{\prime \prime }\), say \(0\le g^{\prime }\left( d\mid s\right) <g^{\prime \prime }\left( d\mid s\right) \le 1\), and \(q\in \left( 0,1\right) \) such that \(g=qg^{\prime }+\left( 1-q\right) g^{\prime \prime }\). Then \(g\left( d\mid s\right) =qg^{\prime }\left( d\mid s\right) +\left( 1-q\right) g^{\prime \prime }\left( d\mid s\right) \in \left( 0,1\right) \) and \(g\left( s\right) \) is not a point-mass. Conversely, if \(g\in \Delta \left( D\right) ^{S}\) is not a vector of point-masses, then \(g\left( s\right) \) is not a point-mass for some \(s\in S\). Therefore, there exist \(g^{\prime }\left( s\right) ,g^{\prime \prime }\left( s\right) \in \Delta \left( D\right) \) with \(g^{\prime }\left( s\right) \ne g^{\prime \prime }\left( s\right) \) and \(q\in \left( 0,1\right) \) such that \(g\left( s\right) =qg^{\prime }\left( s\right) +\left( 1-q\right) g^{\prime \prime }\left( s\right) \). But this implies that \(g=qg^{\prime }+\left( 1-q\right) g^{\prime \prime }\) where \(g^{\prime }\) (resp. \(g^{\prime \prime }\)) is obtained replacing the s-th element \(g\left( s\right) \) of the vector g with \(g^{\prime }\left( s\right) \) (resp. \(g^{\prime \prime }\left( s\right) \)). Thus g is not extreme.

In particular, the generic extreme point of \(\Delta \left( D\right) ^{S}\) is

$$\begin{aligned} \left[ \begin{array}{c} \delta _{e\left( s_{1}\right) }\\ \delta _{e\left( s_{2}\right) }\\ \vdots \\ \delta _{e\left( s_{n}\right) } \end{array} \right] \text { with }\left[ \begin{array}{c} e\left( s_{1}\right) \\ e\left( s_{2}\right) \\ \vdots \\ e\left( s_{n}\right) \end{array} \right] =e\in D^{S}. \end{aligned}$$

If part. Assume \(\left\{ \rho _{a}\right\} _{a\in A}=C^{S}\). For each \(e\in C^{S}\), there exists \(a_{e}\in A\) such that \(\rho _{a_{e}}=e\). For each \(f\in \Delta \left( C\right) ^{S}\), set \(D= {\textstyle \bigcup \nolimits _{s\in S}} \mathrm {supp}f\left( s\right) \). Then \(\Delta \left( D\right) ^{S}\) is compact in \({\mathbb {R}}^{D}\) since D is finite. By the Krein–Milman Theorem, there exists \(\phi \in \Delta \left( D^{S}\right) \) such that

$$\begin{aligned} f= {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \left[ \begin{array}{c} \delta _{e\left( s_{1}\right) }\\ \delta _{e\left( s_{2}\right) }\\ \vdots \\ \delta _{e\left( s_{n}\right) } \end{array} \right] = {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \left[ \begin{array}{c} \delta _{\rho \left( a_{e},s_{1}\right) }\\ \delta _{\rho \left( a_{e},s_{2}\right) }\\ \vdots \\ \delta _{\rho \left( a_{e},s_{n}\right) } \end{array} \right] = {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \left[ \begin{array}{c} \rho _{\delta _{a_{e}}}\left( s_{1}\right) \\ \rho _{\delta _{a_{e}}}\left( s_{2}\right) \\ \vdots \\ \rho _{\delta _{a_{e}}}\left( s_{n}\right) \end{array} \right] \end{aligned}$$
(24)

where the last equality follows from point 1 of this proposition. By (24), and since \(\digamma \) is affine (point 2 of this proposition),

$$\begin{aligned} f= {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \rho _{\delta _{a_{e}}}= {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \digamma \left( \delta _{a_{e}}\right) =\digamma \left( {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \delta _{a_{e}}\right) \end{aligned}$$

where \( {\displaystyle \sum \limits _{e\in D^{S}}} \phi \left( e\right) \delta _{a_{e}}\in \Delta \left( A\right) \) since \(D^{S}\) is finite and \(\Delta \left( A\right) \) is convex. Therefore, \(\digamma \) is onto.

Only if part. Assume \(\digamma \left( \Delta \left( A\right) \right) =\Delta \left( C\right) ^{S}\). For each \(e\in C^{S}\), there exists \(\alpha \in \Delta \left( A\right) \) such that

$$\begin{aligned} \rho _{\alpha }\left( s\right) =\delta _{e\left( s\right) }\quad \forall s\in S. \end{aligned}$$
(25)

Partition the finite support of \(\alpha \) into realization equivalence classes so that

$$\begin{aligned} \mathrm {supp}\alpha = {\displaystyle \bigsqcup \limits _{i=1}^{k}} A_{i} \end{aligned}$$

with \(\rho _{a_{i}}=\rho _{a_{i}^{\prime }}\) for all \(a_{i},a_{i}^{\prime }\in A_{i}\) and all \(i=1,2,\ldots ,k\) and \(\rho _{a_{i}}\ne \rho _{a_{j}}\) if \(a_{i}\in A_{i}\), \(a_{j}\in A_{j}\) and \(i\ne j\). Moreover, for each \(i=1,2,\ldots ,k\) arbitrarily select \(b_{i}\in A_{i}\). By (25), for each \(s\in S\),

$$\begin{aligned} \delta _{e\left( s\right) }={\sum \limits _{a\in \mathrm {supp}\alpha }} \alpha \left( a\right) \rho _{\delta _{a}}\left( s\right) ={\sum \limits _{i=1}^{k}}\left( {\sum \limits _{a_{i}\in A_{i}}}\alpha \left( a_{i}\right) \rho _{\delta _{a_{i}}}\left( s\right) \right) \end{aligned}$$

but, for each \(i=1,2,\ldots ,k\), and all \(a_{i}\in A_{i}\),

$$\begin{aligned} \rho _{\delta _{a_{i}}}\left( s\right) =\delta _{\rho \left( a_{i},s\right) }=\delta _{\rho \left( b_{i},s\right) }=\rho _{\delta _{b_{i}}}\left( s\right) . \end{aligned}$$

Therefore, setting \(\beta \left( b_{i}\right) ={\sum \limits _{a_{i}\in A_{i}} }\alpha \left( a_{i}\right) \) for all \(i=1,2,\ldots ,k\) and \(\beta \left( a\right) =0\) if \(a\in A{\setminus }\left\{ b_{1},\ldots ,b_{k}\right\} \), \(\beta \in \Delta \left( A\right) \) is such that

$$\begin{aligned} \delta _{e\left( s\right) }={\sum \limits _{i=1}^{k}}\left( {\sum \limits _{a_{i}\in A_{i}}}\alpha \left( a_{i}\right) \right) \rho _{\delta _{b_{i}}}\left( s\right) ={\sum \limits _{i=1}^{k}}\beta \left( b_{i}\right) \rho _{\delta _{b_{i}}}\left( s\right) ={\sum \limits _{i=1}^{k} }\beta \left( b_{i}\right) \delta _{\rho \left( b_{i},s\right) } \end{aligned}$$

and

$$\begin{aligned} \left[ \begin{array}{c} \delta _{e\left( s_{1}\right) }\\ \delta _{e\left( s_{2}\right) }\\ \vdots \\ \delta _{e\left( s_{n}\right) } \end{array} \right] ={\sum \limits _{i=1}^{k}}\beta \left( b_{i}\right) \left[ \begin{array}{c} \delta _{\rho \left( b_{i},s_{1}\right) }\\ \delta _{\rho \left( b_{i},s_{2}\right) }\\ \vdots \\ \delta _{\rho \left( b_{i},s_{n}\right) } \end{array} \right] . \end{aligned}$$
(26)

The summands \(\left[ \delta _{\rho \left( b_{i},s_{1}\right) }\ \ldots \text { }\delta _{\rho \left( b_{i},s_{n}\right) }\right] ^{\intercal }\) are distinct (extreme) points in \(\Delta \left( C\right) ^{S}\) and \(\left[ \delta _{e\left( s_{1}\right) }\ \ldots \text { }\delta _{e\left( s_{n}\right) }\right] ^{\intercal }\) is an extreme point of \(\Delta \left( C\right) ^{S}\). Then \(\beta =\delta _{b}\) for some \(b\in \mathrm {supp}\beta \subseteq A\), and (26) implies \(e=\rho _{b}\). The arbitrary choice of e allows us to conclude that \(C^{S}\subseteq \left\{ \rho _{a}\right\} _{a\in A}\) and the converse inclusion is trivial. \(\square \)

Proof of Corollary 1

If \(\beta \ne \delta _{a}\) there exists \(b\ne a\) such that \(\beta \left( b\right) \ne 0\). Since the framework is reduced \(\rho _{b}\ne \rho _{a}\) and there exists \(s\in S\) such that \(\rho \left( a,s\right) \ne \rho \left( b,s\right) \). Setting \(c=\rho \left( b,s\right) \), it follows

$$\begin{aligned} \rho _{\beta }\left( c\mid s\right) \ge \beta \left( b\right) >0=\delta _{\rho \left( a,s\right) }\left( c\right) =\rho _{\delta _{a}}\left( c\mid s\right) \end{aligned}$$

and hence \(\rho _{\beta }\ne \rho _{\delta _{a}}\) and \(\delta _{a}\not \approx \beta \). By contrapositive \(\delta _{a}\approx \beta \Longrightarrow \beta =\delta _{a}\), and the converse is trivial. \(\square \)

Lemma 1

Let \(\left( A,S,C,\rho \right) \) be a decision framework, \(\alpha \in \Delta \left( A\right) \), \(u\in {\mathbb {R}}^{C}\), and \(\mu \in \Delta \left( S\right) \). Then:

  1. 1.

    \(\rho _{\alpha }\left( s\right) ={\sum \limits _{a\in A}}\alpha \left( a\right) \delta _{\rho \left( a,s\right) }\) for all \(s\in S\);

  2. 2.

    \(u\left( \rho _{\alpha }\left( s\right) \right) ={\mathbb {E}} _{\rho _{\alpha }\left( s\right) }\left[ u\right] ={\sum \limits _{a\in A} }\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) \);

  3. 3.

    \(\int _{S}u\left( \rho _{\alpha }\left( s\right) \right) d\mu \left( s\right) ={\mathbb {E}}_{\alpha \times \mu }\left[ u\circ \rho \right] \).

Moreover, if \(\left( A,S,C,\rho \right) \) is a Luce–Raiffa framework, then

$$\begin{aligned} \begin{array}{cccc} \epsilon {:} &{} \Delta \left( C\right) &{} \rightarrow &{} \Delta _{\ell }\left( A\right) \\ &{} {\sum \limits _{c\in C}}\gamma \left( c\right) \delta _{c} &{} \mapsto &{} {\sum \limits _{c\in C}}\gamma \left( c\right) \delta _{cS} \end{array} \end{aligned}$$

is affine and bijective. In particular:

  1. 4.

    for each \(\alpha ={\sum \limits _{c\in C}}\alpha \left( cS\right) \delta _{cS}\in \Delta _{\ell }\left( A\right) \) the only \(\gamma \in \Delta \left( C\right) \) such that \(\epsilon \left( \gamma \right) =\alpha \) is \(\epsilon ^{-1}\left( \alpha \right) ={\sum \limits _{c\in C}}\alpha \left( cS\right) \delta _{c}\);

  2. 5.

    for each \(\gamma \in \Delta \left( C\right) \) and each \(s\in S\), \(\rho _{\epsilon \left( \gamma \right) }\left( s\right) =\gamma \).

Proof

  1. 1.

    Follows from points 1 and 2 of Proposition 2. Specifically,

    $$\begin{aligned} \rho _{\alpha }=\digamma \left( {\displaystyle \sum \limits _{a\in A}} \alpha \left( a\right) \delta _{a}\right) = {\displaystyle \sum \limits _{a\in A}} \alpha \left( a\right) \digamma \left( \delta _{a}\right) ={\sum \limits _{a\in A}}\alpha \left( a\right) \rho _{\delta _{a}} \end{aligned}$$

    and therefore for each \(s\in S\)

    $$\begin{aligned} \rho _{\alpha }\left( s\right) ={\sum \limits _{a\in A}}\alpha \left( a\right) \rho _{\delta _{a}}\left( s\right) ={\sum \limits _{a\in A}}\alpha \left( a\right) \delta _{\rho \left( a,s\right) }. \end{aligned}$$
  2. 2.

    By definition, for all \(s\in S\),

    $$\begin{aligned}&u\left( \rho _{\alpha }\left( s\right) \right) ={\mathbb {E}}_{\rho _{\alpha }\left( s\right) }\left[ u\right] ={\mathbb {E}}_{{\sum \limits _{a\in A} }\alpha \left( a\right) \delta _{\rho \left( a,s\right) }}\left[ u\right] ={\sum \limits _{a\in A}}\alpha \left( a\right) {\mathbb {E}}_{\delta _{\rho \left( a,s\right) }}\left[ u\right] \\&\quad ={\sum \limits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) . \end{aligned}$$
  3. 3.

    By definition,

    $$\begin{aligned} \int _{S}u\left( \rho _{\alpha }\left( s\right) \right) d\mu \left( s\right)= & {} {\sum \limits _{s\in S}\mu }\left( s\right) {\sum \limits _{a\in A}} \alpha \left( a\right) u\left( \rho \left( a,s\right) \right) ={\sum \limits _{a\in A}\sum \limits _{s\in S}}\alpha \left( a\right) {\mu }\left( s\right) u\left( \rho \left( a,s\right) \right) \\= & {} {\mathbb {E}} _{\alpha \times \mu }\left[ u\circ \rho \right] . \end{aligned}$$

    If \(\left( A,S,C,\rho \right) \) is a Luce–Raiffa framework, since all sure actions are conceivable for each \(c\in C\) there exists a sure action \(a_{c}\in A\) such that \(\rho \left( a_{c},\cdot \right) \equiv c\), reduction instead guarantees that such sure action is unique and we denote it by cS. In other words, the map \(c\mapsto cS\) is well defined. It is also easy to check that its range is the set of all sure actions and that the map is injective. Therefore \(c\hookrightarrow cS\) is an embedding of C onto the set of all sure actions. The fact that \(\epsilon \) is affine and bijective immediately follows.

  4. 4.

    Clearly \(\gamma ={\sum \limits _{c\in C}}\alpha \left( cS\right) \delta _{c}\in \Delta \left( C\right) \) and \(\gamma \left( c\right) =\alpha \left( cS\right) \) for all \(c\in C\), by definition of \(\epsilon \) it follows \(\epsilon \left( \gamma \right) ={\sum \limits _{c\in C}\gamma }\left( c\right) \delta _{cS}=\alpha \).

  5. 5.

    By definition \(\epsilon \left( \gamma \right) ={\sum \limits _{c\in \mathrm {supp}\gamma }\gamma }\left( c\right) \delta _{cS}\), therefore, for each \(s\in S\),

    $$\begin{aligned} \rho _{\epsilon \left( \gamma \right) }\left( s\right)= & {} \rho _{{\sum \limits _{c\in \mathrm {supp}\gamma }\gamma }\left( c\right) \delta _{cS}}\left( s\right) ={\sum \limits _{c\in \mathrm {supp}\gamma }\gamma }\left( c\right) \rho _{\delta _{cS}}\left( s\right) \nonumber \\= & {} {\sum \limits _{c\in \mathrm {supp}\gamma }\gamma }\left( c\right) \delta _{\rho \left( cS,s\right) }={\sum \limits _{c\in \mathrm {supp}\gamma }\gamma }\left( c\right) \delta _{c}=\gamma . \end{aligned}$$
    (27)

    \(\square \)

Proof of Theorem 1

(i) \(\Longrightarrow \) (ii). Since \(\succsim \) satisfies Axiom A.1, then

$$\begin{aligned} \Gamma _{\succsim }\left( \mathcal {A}\right) =\left\{ \alpha \in \mathcal {A}:\alpha \succsim \beta \ \forall \beta \in \mathcal {A}\right\} \quad \forall \mathcal {A}\in \mathcal {\wp }\left( \Delta \left( A\right) \right) \end{aligned}$$

is a rational choice correspondence and generates \(\succsim \). Since \(\succsim \) also satisfies Axiom A.2, then \(\succsim _{\Delta \left( C\right) }\) satisfies Axioms 1, 2, and 3 of Herstein and Milnor (1953) and there exists \(u\in {\mathbb {R}}^{C}\) such that, if \(\gamma ,\zeta \in \Delta \left( C\right) \), then

$$\begin{aligned} \gamma \succsim _{\Delta \left( C\right) }\zeta \iff {\sum \limits _{c\in C}\gamma }\left( c\right) u\left( c\right) \ge {\sum \limits _{c\in C}\zeta }\left( c\right) u\left( c\right) \end{aligned}$$

and, by definition of \(\succsim _{\Delta \left( C\right) }\) this means

$$\begin{aligned} \epsilon \left( \gamma \right) \succsim \epsilon \left( \zeta \right) \iff {\mathbb {E}}_{{\gamma }}\left[ u\right] \ge {\mathbb {E}}_{{\zeta }}\left[ u\right] . \end{aligned}$$

Therefore, if \(\alpha ,\beta \in \Delta \left( A\right) \), then

Now Axiom A.3 implies

$$\begin{aligned} \alpha \geqslant _{u}\beta \implies \alpha \succsim \beta \end{aligned}$$
(28)

moreover, if \(\alpha ,\beta \in \Delta _{\ell }\left( A\right) \), then \(\alpha =\epsilon \left( \gamma \right) \) and \(\beta =\epsilon \left( \zeta \right) \) for some \(\gamma ,\zeta \in \Delta \left( C\right) \), and

$$\begin{aligned} \alpha \succsim \beta \iff \gamma \succsim _{\Delta \left( C\right) }\zeta \iff \rho _{\epsilon \left( \gamma \right) }\left( s\right) \succsim _{_{\Delta \left( C\right) }}\rho _{\epsilon \left( \zeta \right) }\left( s\right) \quad \forall s\in S\iff \alpha \geqslant _{u}\beta \end{aligned}$$

that is \(\succsim \), \(\succcurlyeq _{S}\), and \(\geqslant _{u}\) coincide on \(\Delta _{\ell }\left( A\right) \) where

This immediately implies, for each \(\mathcal {A}\in \mathcal {\wp }\left( \Delta \left( A\right) \right) \) such that \(\mathcal {A}\subseteq \Delta _{\ell }\left( A\right) \),

$$\begin{aligned} \Gamma _{\succsim }\left( \mathcal {A}\right)&=\left\{ \alpha \in \mathcal {A}:\alpha \succsim \beta \ \forall \beta \in \mathcal {A}\right\} \\&=\left\{ \alpha \in \mathcal {A}:\alpha \geqslant _{u}\beta \ \forall \beta \in \mathcal {A}\right\} =\Upsilon _{u}\left( \mathcal {A}\right) \end{aligned}$$

For a generic \(\mathcal {A}\in \mathcal {\wp }\left( \Delta \left( A\right) \right) \), by (28),

$$\begin{aligned} \Upsilon _{u}\left( \mathcal {A}\right)&=\left\{ \alpha \in \mathcal {A} :\alpha \geqslant _{u}\beta \ \forall \beta \in \mathcal {A}\right\} \\&\subseteq \left\{ \alpha \in \mathcal {A}:\alpha \succsim \beta \ \forall \beta \in \mathcal {A}\right\} =\Gamma _{\succsim }\left( \mathcal {A}\right) . \end{aligned}$$

(ii) \(\Longrightarrow \) (i). If \(\succsim \) is generated by a rational choice correspondence \(\Gamma :\mathcal {\wp }\left( \Delta \left( A\right) \right) \rightarrow \mathcal {\wp }\left( \Delta \left( A\right) \right) \), then \(\succsim \) satisfies Axiom A.1. By (ii) there exists also \(u\in {\mathbb {R}}^{C}\) such that:

$$\begin{aligned} \Upsilon _{u}\left( \mathcal {A}\right) \subseteq \Gamma \left( \mathcal {A} \right) \ \text {for all }\mathcal {A}\in \mathcal {\wp }\left( \Delta \left( A\right) \right) \text { and equality holds if }\mathcal {A}\subseteq \Delta _{\ell }\left( A\right) . \end{aligned}$$

Therefore, if \(\alpha ,\beta \in \Delta \left( A\right) \),

but \(\left\{ \epsilon \left( \rho _{\alpha }\left( s\right) \right) ,\epsilon \left( \rho _{\beta }\left( s\right) \right) \right\} \subseteq \Delta _{\ell }\left( A\right) \) for all \(s\in S\), that is

(29)

Moreover, given \(\eta ,\kappa \in \Delta \left( A\right) \)

and (29) becomes

$$\begin{aligned} \left. \alpha \succcurlyeq _{S}\beta \right. \iff {\mathbb {E}}_{\rho _{\epsilon \left( \rho _{\alpha }\left( s\right) \right) }\left( w\right) }\left[ u\right] \ge {\mathbb {E}}_{\rho _{\epsilon \left( \rho _{\beta }\left( s\right) \right) }\left( w\right) }\left[ u\right] \quad \forall w,s\in S \end{aligned}$$

but, \(\rho _{\epsilon \left( \gamma \right) }\equiv \gamma \) for all \(\gamma \in \Delta \left( C\right) \), therefore

(30)

and \(\succsim \) satisfies Axiom A.3.

Finally, if \(\alpha ,\beta \in \Delta _{\ell }\left( A\right) \), then \(\alpha =\epsilon \left( \gamma \right) \) and \(\beta =\epsilon \left( \zeta \right) \) for some \(\gamma ,\zeta \in \Delta \left( C\right) \), and

but \(\mathrm {supp}\alpha ,\mathrm {supp}\beta \subseteq \left\{ cS\right\} _{c\in C}\) and by (30)

and so \(\succsim \) satisfies Axioms 2 and 3 of Herstein and Milnor (1953) on \(\Delta _{\ell }\left( A\right) \), that is, Axiom A.2.\(\square \)

Recall that if \(\gamma \in \Delta \left( C\right) \) and \(u\in {\mathbb {R}}^{C}\) we indifferently write \({\mathbb {E}}_{{\gamma }}\left[ u\right] \) or \(u\left( \gamma \right) \); with a similar abuse of notation, if \(f\in \Delta \left( C\right) ^{S}\) we denote by \(u\left( f\right) \) the element of \({\mathbb {R}}^{S}\) defined by

$$\begin{aligned} u\left( f\right) =\left[ \begin{array}{c} u\left( f\left( s_{1}\right) \right) \\ u\left( f\left( s_{2}\right) \right) \\ \vdots \\ u\left( f\left( s_{n}\right) \right) \end{array} \right] =\left[ \begin{array}{c} {\mathbb {E}}_{f\left( s_{1}\right) }\left[ u\right] \\ {\mathbb {E}}_{f\left( s_{2}\right) }\left[ u\right] \\ \vdots \\ {\mathbb {E}}_{f\left( s_{n}\right) }\left[ u\right] \end{array} \right] . \end{aligned}$$

Lemma 2

Let \(\left( A,S,C,\rho \right) \) be a Luce–Raiffa framework, \(\mathcal {F}=\digamma \left( \Delta \left( A\right) \right) \), \(u\in {\mathbb {R}}^{C}\), and \(\succsim \) be a preorder on \(\Delta \left( A\right) \). Then:

  1. 1.

    \(\mathcal {F}\) is a convex subset of \(\Delta \left( C\right) ^{S}\) containing all constant Anscombe–Aumann acts;

  2. 2.

    if \(\succsim \) satisfies Axiom A.3, then \(\succsim \) satisfies mixed consequentialism;

  3. 3.

    if all bets are conceivable, \(\left\{ u\left( f\right) :f\in \mathcal {F}\right\} =\left( \mathrm {co}\left( u\left( C\right) \right) \right) ^{S}=u\left( \Delta \left( C\right) \right) ^{S}\).

Moreover, if \(\succsim \) satisfies mixed consequentialism, then \(\succsim _{\digamma }\) is a well-defined preorder on \(\mathcal {F}\) and:

  1. 4.

    for \(N=1,\,3,\,4,\,6,\,7,\,9,\,\succsim _{\digamma }\) satisfies Axiom AA.N if and only if \(\succsim \) satisfies Axiom A.N;

  2. 5.

    Axiom AA.2 for \(\succsim _{\digamma }\) is implied by Axiom A.2 for \(\succsim \) (and they are equivalent under Axiom A.4);

  3. 6.

    Axiom AA.5 for \(\succsim _{\digamma }\) is equivalent to Axiom A.5 for \(\succsim \) when \(\succsim _{\digamma }^{\#}\) is defined by

    $$\begin{aligned} f\succsim _{\digamma }^{\#}g\iff \ f\left( s\right) \succsim _{\digamma }g\left( s\right) \quad \forall s\in S\text {;} \end{aligned}$$
  4. 7.

    Axiom AA.8 for \(\succsim _{\digamma }\) implies Axiom A.8 for \(\succsim (\)and they are equivalent under Axioms A.1 and A.4).

Proof

  1. 1.

    Follows from the fact that \(\digamma \) is affine and the fact that \(\rho _{\epsilon \left( \gamma \right) }\equiv \gamma \) for all \(\gamma \in \Delta \left( C\right) \).

  2. 2.

    If \(\alpha ,\beta \in \Delta \left( A\right) \) and \(\alpha \approx \beta \), then \(\rho _{\alpha }\left( s\right) =\rho _{\beta }\left( s\right) \) for all \(s\in S\); since \(\succsim \) is a preorder \(\epsilon \left( \rho _{\alpha }\left( s\right) \right) \succsim \epsilon \left( \rho _{\beta }\left( s\right) \right) \), that is, \(\rho _{\alpha }\left( s\right) \succsim _{\Delta \left( C\right) }\rho _{\beta }\left( s\right) \) for all \(s\in S\), and Axiom A.3 implies \(\alpha \succsim \beta \). By a symmetric argument \(\beta \succsim \alpha \).

  3. 3.

    Obviously, \(\left\{ u\left( f\right) :f\in \mathcal {F}\right\} \subseteq \left( \mathrm {co}\left( u\left( C\right) \right) \right) ^{S}=u\left( \Delta \left( C\right) \right) ^{S}\). Set \(U=\mathrm {co} \left( u\left( C\right) \right) \) and assume \(u\left( C\right) \) is not a singleton, otherwise the result is trivial. For every vector \(\varkappa =\left[ x_{1}\ \ldots \text { }x_{n}\right] ^{\intercal }\in U^{S}\) there exist \(c\ne d\) in C and \(q_{1},q_{2},\ldots ,q_{n}\in \left[ 0,1\right] \ \)such that

    $$\begin{aligned} \left[ \begin{array}{c} x_{1}\\ x_{2}\\ \vdots \\ x_{n} \end{array} \right] =\left[ \begin{array}{c} q_{1}u\left( c\right) +\left( 1-q_{1}\right) u\left( d\right) \\ q_{2}u\left( c\right) +\left( 1-q_{2}\right) u\left( d\right) \\ \vdots \\ q_{n}u\left( c\right) +\left( 1-q_{n}\right) u\left( d\right) \end{array} \right] =\left[ \begin{array}{c} u\left( q_{1}\delta _{c}+\left( 1-q_{1}\right) \delta _{d}\right) \\ u\left( q_{2}\delta _{c}+\left( 1-q_{2}\right) \delta _{d}\right) \\ \vdots \\ u\left( q_{n}\delta _{c}+\left( 1-q_{n}\right) \delta _{d}\right) \end{array} \right] . \end{aligned}$$

    Set \(D=\left\{ c,d\right\} \), set \(B=\left\{ a\in A:\rho _{a}\left( S\right) \subseteq \left\{ c,d\right\} \right\} \), and consider the Luce–Raiffa framework \(\left( B,S,D,\rho \right) \). Since all the bets are conceivable in \(\left( A,S,C,\rho \right) \), then \(\left\{ \rho _{b}\right\} _{b\in B}=D^{S}\). In particular, by point 3 of Proposition 2 for each \(f\in \Delta \left( D\right) ^{S}\), there exists \(\beta _{f}\in \Delta \left( B\right) \) such that

    $$\begin{aligned} \beta _{f}\left( \left\{ b\in B:\rho \left( b,s\right) =c\right\} \right) =f\left( c|s\right) \quad \forall s\in S. \end{aligned}$$

    Choose \(f\in \Delta \left( D\right) ^{S}\) such that \(f\left( c\mid s_{i}\right) =q_{i}=1-f\left( d\mid s_{i}\right) \) for all \(i=1,\ldots ,n\), and set \(\alpha \left( a\right) =\beta _{f}\left( a\right) \) if \(a\in B\) and \(\alpha \left( a\right) =0\) if \(a\in A{\setminus } B\). Then, \(\alpha \in \Delta \left( A\right) \) and, for all \(i=1,\ldots ,n\),

    $$\begin{aligned} \rho _{\alpha }\left( c\mid s_{i}\right)&=\beta _{f}\left( \left\{ b\in B:\rho \left( b,s_{i}\right) =c\right\} \right) =f\left( c\mid s_{i}\right) =q_{i}\\ \rho _{\alpha }\left( d\mid s_{i}\right)&=f\left( d\mid s_{i}\right) =1-q_{i} \end{aligned}$$

    so that \(\rho _{\alpha }\left( s_{i}\right) =q_{i}\delta _{c}+\left( 1-q_{i}\right) \delta _{d}\) and \(u\left( \rho _{\alpha }\left( s_{i}\right) \right) =q_{i}u\left( c\right) +\left( 1-q_{i}\right) u\left( d\right) \), that is, \(u\left( \rho _{\alpha }\right) =\varkappa \).

Assume \(\succsim \) satisfies mixed consequentialism. Let \(f,g\in \mathcal {F}\) and \(\alpha _{f},\beta _{f},\alpha _{g},\beta _{g}\in \Delta \left( A\right) \), not necessarily distinct, be such that

$$\begin{aligned} \rho _{\alpha _{f}}=\rho _{\beta _{f}}=f \quad \text { and } \quad \rho _{\alpha _{g}}=\rho _{\beta _{g}}=g\text {.} \end{aligned}$$
(31)

These mixed actions exist since \(\mathcal {F}=\digamma \left( \Delta \left( A\right) \right) \). By mixed consequentialism, (31) implies \(\alpha _{f}\sim \beta _{f}\) and \(\alpha _{g}\sim \beta _{g}\) Therefore, by transitivity of \(\succsim \),

$$\begin{aligned} \alpha _{f}\succsim \alpha _{g}\iff \beta _{f}\succsim \beta _{g} \end{aligned}$$

and \(\succsim _{\digamma }\) is well defined.Footnote 49 Reflexivity and transitivity of \(\succsim _{\digamma }\) follow from reflexivity and transitivity of \(\succsim \).

The verification of points 4, 5, and 6 is routine.

7. Assume \(\succsim _{\digamma }\) satisfies Axiom AA.8. If \(\alpha ,\beta \in \Delta \left( A\right) \) and \(\alpha \sim \beta \), then \(\rho _{\alpha } \sim _{\digamma }\rho _{\beta }\). By Axiom AA.8, \(2^{-1}\rho _{\alpha } +2^{-1}\rho _{\beta }\succsim _{\digamma }\rho _{\alpha }\), therefore \(\rho _{2^{-1}\alpha +2^{-1}\beta }\succsim _{\digamma }\rho _{\alpha }\) and \(2^{-1} \alpha +2^{-1}\beta \succsim \alpha \), so that \(\succsim \) satisfies Axiom A.8.

Conversely, assume \(\succsim \) satisfies Axioms A.1 and A.4. Next we show that Axiom A.8 implies that for all \(\alpha ,\beta \in \Delta \left( A\right) \) such that \(\alpha \sim \beta \) and all \(q\in \left( 0,1\right) \) it holds \(q\alpha +\left( 1-q\right) \beta \succsim \alpha \). Per contra, assume there exist \(\alpha ,\beta \in \Delta \left( A\right) \) and \(p\in \left( 0,1\right) \) such that \(\alpha \sim \beta \) and \(p\alpha +\left( 1-p\right) \beta \prec \alpha \). Set

$$\begin{aligned} T=\left\{ t\in \left[ 0,1\right] :t\alpha +\left( 1-t\right) \beta \prec \alpha \right\} . \end{aligned}$$

Clearly \(p\in T\). Moreover, by Axioms A.1 and A.4, T is open in \(\left[ 0,1\right] \) and hence there exists O open in \({\mathbb {R}}\) such that \(T=O\cap \left[ 0,1\right] \), but \(T\subseteq \left( 0,1\right) \), therefore \(T=O\cap \left( 0,1\right) \) is open in \({\mathbb {R}}\). Therefore there exists an open interval in T that contains p. The set

$$\begin{aligned} I=\bigcup \limits _{p\ni \left( q,r\right) \subseteq T}\left( q,r\right) \end{aligned}$$

is a union of pairwise overlapping open intervals, and so it is an open interval itself: \(p\in I=\left( \bar{q},\bar{r}\right) \subseteq T\subseteq \left( 0,1\right) \). If \(\bar{q}\in T\), there would exist \(\varepsilon >0\) such that \(\left( \bar{q}-\varepsilon ,\bar{q}+\varepsilon \right) \subseteq T\), and then \(p\in \left( \bar{q}-\varepsilon ,\bar{r}\right) \subseteq T\), whence

$$\begin{aligned} \left( \bar{q}-\varepsilon ,\bar{r}\right) \subseteq I=\left( \bar{q},\bar{r}\right) \end{aligned}$$

a contradiction. Therefore \(\bar{q}\notin T\) and (analogously) \(\bar{r}\notin T\), that is,

$$\begin{aligned} \bar{q}\alpha +\left( 1-\bar{q}\right) \beta \succsim \alpha \quad \text { and } \quad \bar{r}\alpha +\left( 1-\bar{r}\right) \beta \succsim \alpha \text {.} \end{aligned}$$

Since \(\left( \bar{q},\bar{r}\right) \subseteq T\) is nonempty, eventually, \(\bar{q}+n^{-1}\) and \(\bar{r}-n^{-1}\) belong to T, and by Axiom A.4

$$\begin{aligned} \bar{q}\alpha +\left( 1-\bar{q}\right) \beta \precsim \alpha \quad \text { and }\quad \bar{r}\alpha +\left( 1-\bar{r}\right) \beta \precsim \alpha \text {.} \end{aligned}$$

That is, \(\bar{q}\alpha +\left( 1-\bar{q}\right) \beta \sim \bar{r} \alpha +\left( 1-\bar{r}\right) \beta \sim \alpha \), and Axiom A.8 implies

$$\begin{aligned}&\left( \frac{\bar{q}}{2}+\frac{\bar{r}}{2}\right) \alpha +\left( 1-\frac{\bar{q}}{2}-\frac{\bar{r}}{2}\right) \beta =\frac{1}{2}\left( \bar{q}\alpha +\left( 1-\bar{q}\right) \beta \right) \\&\quad +\frac{1}{2}\left( \bar{r}\alpha +\left( 1-\bar{r}\right) \beta \right) \succsim \bar{r} \alpha +\left( 1-\bar{r}\right) \beta \sim \alpha \end{aligned}$$

but this is a contradiction since \(2^{-1}\bar{q}+2^{-1}\bar{r}\in \left( \bar{q},\bar{r}\right) \subseteq T\).

Now let \(f,g\in \mathcal {F}\) be such that \(f\sim _{\digamma }g\) and arbitrarily choose \(q\in \left( 0,1\right) \). Let \(\alpha ,\beta \in \Delta \left( A\right) \) be such that \(f=\rho _{\alpha }\) and \(g=\rho _{\beta }\), then \(f\sim _{\digamma }g\) implies \(\alpha \sim \beta \), Axioms A.1, A.4, and A.8 imply \(q\alpha +\left( 1-q\right) \beta \succsim \alpha \), whence \(\rho _{q\alpha +\left( 1-q\right) \beta }\succsim _{\digamma }\rho _{\alpha }\) and \(qf+\left( 1-q\right) g=q\rho _{\alpha }+\left( 1-q\right) \rho _{\beta }\succsim _{\digamma }\rho _{\alpha }=f\). As wanted. \(\square \)

Proof of Proposition 3

It immediately follows from Lemma 2. \(\square \)

In order to obtain representation (16), due to Cerreia-Vioglio et al. (2011b), we need two final pieces of notation. First, given \(u\in {\mathbb {R}}^{C}\), we denote by \(U=\mathrm {co} \left( u\left( C\right) \right) \) the smallest interval containing \(u\left( C\right) \) and by \(\mathcal {G}\left( U,\Delta \left( S\right) \right) \) the set of functions \(G:U\times \Delta \left( S\right) \rightarrow \left( -\infty ,\infty \right] \) such that:

  1. 1.

    G is quasiconvex,

  2. 2.

    \(\inf _{\sigma \in \Delta \left( S\right) }G\left( x,\sigma \right) =x\) for all \(x\in U\),

  3. 3.

    G is increasing in the first component,

  4. 4.

    the function \(\varkappa \mapsto \inf _{\sigma \in \Delta \left( S\right) }G\left( \varkappa \cdot \sigma ,\sigma \right) \) is continuous on \(U^{S}\).

Second, for each \(l\in -U\) and each \(\sigma \in \Delta \left( S\right) \), we denote by \(\mathcal {B}\left( l,\sigma \right) \) the set of all mixed actions that have Bayes risk level l under \(\sigma \), that is,

$$\begin{aligned} \mathcal {B}\left( l,\sigma \right) =\left\{ \beta \in \Delta \left( A\right) :r\left( \beta ,\sigma \right) =l\right\} \end{aligned}$$

and by \(v\left( l,\sigma \right) \) the indirect payoff \(v\left( \mathcal {B}\left( l,\sigma \right) \right) \) of decision problem \(\left( \mathcal {B}\left( l,\sigma \right) ,S,C,\rho \right) \), as defined in (8).

Theorem 5

Let \(\left( A,S,C,\rho \right) \) be a Marschak–Radner framework and \(\succsim \) a binary relation on \(\Delta \left( A\right) \). The following conditions are equivalent:

  1. (i)

    \(\succsim \) is a non-trivial and continuous rational preference that satisfies uncertainty aversion;

  2. (ii)

    there exist a nonconstant \(u\in {\mathbb {R}}^{C}\) and \(G\in \mathcal {G}\left( U,\Delta \left( S\right) \right) \rightarrow \left( -\infty ,\infty \right] \) such that, if \(\alpha ,\beta \in \Delta \left( A\right) \),

    $$\begin{aligned} \alpha \succsim \beta \iff \inf _{\sigma \in \Delta \left( S\right) }G\left( {\mathbb {E}}_{\alpha \times \sigma }\left[ u\circ \rho \right] ,\sigma \right) \ge \inf _{\sigma \in \Delta \left( S\right) }G\left( {\mathbb {E}}_{\beta \times \sigma }\left[ u\circ \rho \right] ,\sigma \right) . \end{aligned}$$
    (32)

In this case, u is cardinally unique and, for each u, the minimal element of \(\mathcal {G}\left( U,\Delta \left( S\right) \right) \) satisfying (32) is the indirect payoff

$$\begin{aligned} G_{u}\left( x,\sigma \right) =v\left( -x,\sigma \right) \quad \forall \left( x,\sigma \right) \in U\times \Delta \left( S\right) . \end{aligned}$$
(33)

Continuous and uncertainty averse rational preferences are thus represented by

$$\begin{aligned} V\left( \alpha \right) =\inf _{\sigma \in \Delta \left( S\right) }G\left( {\mathbb {E}}_{\alpha \times \sigma }\left[ u\circ \rho \right] ,\sigma \right) \quad \forall \alpha \in \Delta \left( A\right) \end{aligned}$$
(34)

and (16) is obtained by setting

$$\begin{aligned} R\left( \alpha ,\sigma \right) =G\left( {\mathbb {E}}_{\alpha \times \sigma }\left[ u\circ \rho \right] ,\sigma \right) \quad \forall \left( \alpha ,\sigma \right) \in \Delta \left( A\right) \times \Delta \left( S\right) \end{aligned}$$

and by choosing \(\Sigma \) as the projection on \(\Delta \left( S\right) \) of the domain of R. In particular, when the minimal \(G_{u}\) described by (33) is considered,

$$\begin{aligned} R_{u}\left( \alpha ,\sigma \right) =v\left( r\left( \alpha ,\sigma \right) ,\sigma \right) \end{aligned}$$

is the indirect payoff of the decision problem in which the only available mixed actions are those with the same Bayes risk as \(\alpha \) under \(\sigma \). This is worth mentioning since the indirect payoff \(v\left( l,\sigma \right) \) can be seen as a comparative index of uncertainty aversion (see Cerreia-Vioglio et al. 2011b).

Proofs of Theorems 2, 3, 4, and 5

Let \(\succsim \) be a rational preference. As shown in the first part of the proof of Theorem 1, there exists \(u\in {\mathbb {R}}^{C}\) such that:

  • if \(\gamma ,\zeta \in \Delta \left( C\right) \), then \(\gamma \succsim _{\Delta \left( C\right) }\zeta \iff {\sum \limits _{c\in C}\gamma }\left( c\right) u\left( c\right) \ge {\sum \limits _{c\in C}\zeta }\left( c\right) u\left( c\right) \);

  • if \(\alpha ,\beta \in \Delta \left( A\right) \), then \(\alpha \succcurlyeq _{S}\beta \iff \alpha \geqslant _{u}\beta \iff {\sum \limits _{a\in A} }\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) \ge {\sum \limits _{a\in A}}\beta \left( a\right) u\left( \rho \left( a,s\right) \right) \) for all \(s\in S\);

  • if \(\alpha ,\beta \in \Delta _{\ell }\left( A\right) \), then \(\alpha \succsim \beta \iff \alpha \succcurlyeq _{S}\beta \iff {\sum \limits _{c\in C}} \alpha \left( cS\right) u\left( c\right) \ge {\sum \limits _{c\in C}} \beta \left( cS\right) u\left( c\right) \).

Moreover, if \(\succsim \) is continuous, for every \(\alpha \in \Delta \left( A\right) \) there exists \(\alpha _{\ell }\in \Delta \left( C\right) \) such that \(\alpha \sim \alpha _{\ell }\), more precisely, \(\alpha \sim \epsilon \left( \alpha _{\ell }\right) \). In fact, choosing w and m in S so that

$$\begin{aligned} \rho _{\alpha }\left( m\right) \succsim _{\Delta \left( C\right) }\rho _{\alpha }\left( s\right) \succsim _{\Delta \left( C\right) }\rho _{\alpha }\left( w\right) \quad \forall s\in S \end{aligned}$$
(35)

it follows \(\epsilon \left( \rho _{\alpha }\left( m\right) \right) \succcurlyeq _{S}\alpha \succcurlyeq _{S}\epsilon \left( \rho _{\alpha }\left( w\right) \right) \). Whence \(\beta =\epsilon \left( \rho _{\alpha }\left( m\right) \right) \) and \(\eta =\epsilon \left( \rho _{\alpha }\left( w\right) \right) \) belong to \(\Delta _{\ell }\left( A\right) \) and, by Axiom A.3, \(\beta \succsim \alpha \succsim \eta \). Therefore, the nonempty and closed (by Axiom A.4) sets

$$\begin{aligned} \left\{ q\in \left[ 0,1\right] :q\eta +\left( 1-q\right) \beta \succsim \alpha \right\} \quad \text { and } \quad \left\{ q\in \left[ 0,1\right] :\alpha \succsim q\eta +\left( 1-q\right) \beta \right\} \end{aligned}$$

cover (by Axiom A.1) the connected set \(\left[ 0,1\right] \). In particular, they cannot be disjoint, and there is \(q_{\ell }\in \left[ 0,1\right] \) such that \(q_{\ell }\eta +\left( 1-q_{\ell }\right) \beta \sim \alpha \); convexity of \(\Delta _{\ell }\left( A\right) =\epsilon \left( \Delta \left( C\right) \right) \) implies that \(q_{\ell }\eta +\left( 1-q_{\ell }\right) \beta =\epsilon \left( \alpha _{\ell }\right) \) for some \(\alpha _{\ell }\in \Delta \left( C\right) \).

If \(\alpha ,\beta \in \Delta \left( A\right) \), then

$$\begin{aligned} \alpha \succsim \beta \iff \epsilon \left( \alpha _{\ell }\right) \succsim \epsilon \left( \beta _{\ell }\right) \iff \alpha _{\ell }\succsim _{\Delta \left( C\right) }\beta _{\ell }\iff {\sum \limits _{c\in C}}\alpha _{\ell }\left( c\right) u\left( c\right) \ge {\sum \limits _{c\in C}}\beta _{\ell }\left( c\right) u\left( c\right) \end{aligned}$$

that is, the functional

$$\begin{aligned} \begin{array}{cccc} V{:} &{} \Delta \left( A\right) &{} \rightarrow &{} {\mathbb {R}}\\ &{} \alpha &{} \mapsto &{} {\sum \limits _{c\in C}}\alpha _{\ell }\left( c\right) u\left( c\right) \end{array} \end{aligned}$$

represents \(\succsim \) on \(\Delta \left( A\right) \).Footnote 50

For each \(\alpha \in \Delta \left( A\right) \), by Eq. (35) and Axiom A.3, \(\epsilon \left( \rho _{\alpha }\left( m\right) \right) \succsim \alpha \succsim \epsilon \left( \rho _{\alpha }\left( w\right) \right) \) so that

$$\begin{aligned} \max _{s\in S}{\sum \limits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right)&=\max _{s\in S}{\mathbb {E}}_{\rho _{\alpha }\left( s\right) }\left[ u\right] ={\mathbb {E}}_{\rho _{\alpha }\left( m\right) }\left[ u\right] =V\left( \epsilon \left( \rho _{\alpha }\left( m\right) \right) \right) \\&\ge V\left( \alpha \right) \\&\ge V\left( \epsilon \left( \rho _{\alpha }\left( w\right) \right) \right) ={\mathbb {E}}_{\rho _{\alpha }\left( w\right) }\left[ u\right] =\min _{s\in S}{\mathbb {E}}_{\rho _{\alpha }\left( s\right) }\left[ u\right] \\&=\min _{s\in S}{\sum \limits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) . \end{aligned}$$

Up until this point, we only assumed that \(\succsim \) satisfies Axioms A.1A.4.

Theorem 2. If, in addition, Axiom A.5 holds, then \(\epsilon \left( \alpha _{\ell }\right) \precsim \alpha \) implies \(\alpha \succcurlyeq _{S}\epsilon \left( \alpha _{\ell }\right) \), that is \(\rho _{\alpha }\left( w\right) \succsim _{\Delta \left( C\right) } \alpha _{\ell }\), and

$$\begin{aligned} \min _{s\in S}{\sum \limits _{a\in A}}\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) =\min _{s\in S}{\mathbb {E}}_{\rho _{\alpha }\left( s\right) }\left[ u\right] ={\mathbb {E}}_{\rho _{\alpha }\left( w\right) }\left[ u\right] \ge {\mathbb {E}}_{\alpha _{\ell }}\left[ u\right] =V\left( \alpha \right) . \end{aligned}$$

To sum up, \(V\left( \alpha \right) =\min _{s\in S}{\sum \nolimits _{a\in A} }\alpha \left( a\right) u\left( \rho \left( a,s\right) \right) \) for all \(\alpha \in \Delta \left( A\right) \), which proves (10). The converse is routine, hence omitted.\(\square \)

If \(\succsim \) satisfies Axioms A.1A.4, by Lemma 2, \(\succsim _{\digamma }\) is well defined and satisfies Axioms AA.1AA.4 on \(\mathcal {F}=\digamma \left( \Delta \left( A\right) \right) \). For each \(f=\rho _{\alpha }\in \mathcal {F}\), \(\alpha \sim \epsilon \left( \alpha _{\ell }\right) \) implies \(f\sim _{\digamma } \rho _{\epsilon \left( \alpha _{\ell }\right) }=\left( \alpha _{\ell }\right) _{S}\). In the Anscombe–Aumann jargon, \(\alpha _{\ell }\) is a certainty equivalent \(\gamma _{f}\) of \(f=\rho _{\alpha }\), more precisely,

$$\begin{aligned} \left\{ \xi \in \Delta \left( C\right) :\alpha \sim \epsilon \left( \xi \right) \right\} =\left\{ \gamma \in \Delta \left( C\right) :\rho _{\alpha }\sim \gamma _{S}\right\} . \end{aligned}$$

Moreover, if \(g=\rho _{\beta }\in \mathcal {F}\), then

$$\begin{aligned} f\succsim _{\digamma }g\Longleftrightarrow & {} \alpha \succsim \beta \iff \alpha _{\ell }\succsim _{\Delta \left( C\right) }\beta _{\ell }\Longleftrightarrow {\mathbb {E}}_{\alpha _{\ell }}\left[ u\right] \ge {\mathbb {E}}_{\beta _{\ell } }\left[ u\right] \\\iff & {} u\left( \gamma _{f}\right) \ge u\left( \gamma _{g}\right) . \end{aligned}$$

In particular, for every \(\gamma ,\zeta \in \Delta \left( C\right) \),

$$\begin{aligned} \gamma _{S}\succsim _{\digamma }\zeta _{S}\Longleftrightarrow & {} \rho _{\epsilon \left( \gamma \right) }\succsim _{\digamma }\rho _{\epsilon \left( \zeta \right) }\Longleftrightarrow \epsilon \left( \gamma \right) \succsim \epsilon \left( \zeta \right) \iff \gamma \succsim _{\Delta \left( C\right) }\zeta \\\Longleftrightarrow & {} {\mathbb {E}}_{\gamma }\left[ u\right] \ge {\mathbb {E}}_{\zeta }\left[ u\right] \iff u\left( \gamma \right) \ge u\left( \zeta \right) . \end{aligned}$$

Set \(U=\mathrm {co}\left( u\left( C\right) \right) =u\left( \Delta \left( C\right) \right) \) and \(u\left( \mathcal {F}\right) =\left\{ u\left( f\right) :f\in \mathcal {F}\right\} \subseteq U^{S}\subseteq {\mathbb {R}}^{S}\), and for each \(\varkappa \in u\left( \mathcal {F}\right) \) define

$$\begin{aligned} I\left( \varkappa \right) =u\left( \gamma _{f}\right) \quad \text {if }\varkappa =u\left( f\right) \text {.} \end{aligned}$$

Using the techniques of Cerreia-Vioglio et al. (2011a, b) it can be shown that \(I:u\left( \mathcal {F}\right) \rightarrow {\mathbb {R}}\) is well defined, monotone and normalized (that is \(I\left( x1_{S}\right) =x\) for all \(x\in U\)). Moreover, for each \(\alpha \in \Delta \left( A\right) \), \(V\left( \alpha \right) ={\mathbb {E}} _{\alpha _{\ell }}\left[ u\right] =u\left( \alpha _{\ell }\right) =I\left( u\left( \rho _{\alpha }\right) \right) \) and if \(f=\rho _{\alpha } ,g=\rho _{\beta }\in \mathcal {F}\)

$$\begin{aligned} f\succsim _{\digamma }g\iff & {} V\left( \alpha \right) \ge V\left( \beta \right) \iff I\left( u\left( \rho _{\alpha }\right) \right) \ge I\left( u\left( \rho _{\beta }\right) \right) \iff I\left( u\left( f\right) \right) \nonumber \\\ge & {} I\left( u\left( g\right) \right) . \end{aligned}$$
(36)

Theorems 3 and 4. If \(\succsim \) satisfies Axiom A.6, then \(\succsim _{\digamma }\) satisfies Axiom AA.6 by Lemma 2, which, together with (36), implies that I is affine. Theorem 3 follows by the finite dimensional versions of the Krein-Rutman Extension Theorem (see, e.g. Ok 2007, p. 496) and the Riesz Representation Theorem. The additional assumptions of Theorem 4, non-triviality of \(\succsim \) and conceivability of all bets, guarantee that u is nonconstant and \(\mu \) is unique.\(\square \)

Theorem 5. Follows from Theorem 3 of Cerreia-Vioglio et al. (2011a, b) and Lemma 2 again, which guarantees that \(\left\{ u\left( f\right) :f\in \mathcal {F}\right\} =U^{S}\) when all bets are conceivable and that \(\succsim _{\digamma }\) satisfies Axiom AA.8 when \(\succsim \) satisfies Axioms A.1A.4 and A.8. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battigalli, P., Cerreia-Vioglio, S., Maccheroni, F. et al. Mixed extensions of decision problems under uncertainty. Econ Theory 63, 827–866 (2017). https://doi.org/10.1007/s00199-016-0972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-016-0972-5

Keywords

Navigation