Skip to main content
Log in

Disproportionate, Age-Related Bone Loss in Long Bone Ends: A Structural Analysis Based on Dual-Energy X-ray Absorptiometry

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract:

The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r= 0.94) determined with peripheral quantative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA of about 10% in contrast to about a 5% loss in trochanteric CSA warrants further investigation regarding its potential role as a predictor for hip fracture. Not only the local differences in bone composition but also the biomechanical aspects are important factors underlying these apparent changes in CSA at the studied skeletal sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 10 September 1998 / Accepted: 17 March 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sievänen, H., Uusi-Rasi, K., Heinonen, A. et al. Disproportionate, Age-Related Bone Loss in Long Bone Ends: A Structural Analysis Based on Dual-Energy X-ray Absorptiometry . Osteoporos Int 10, 295–302 (1999). https://doi.org/10.1007/s001980050230

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001980050230

Navigation