Skip to main content

Advertisement

Log in

Geriatric nutritional risk index as the prognostic factor in older patients with fragility hip fractures

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study investigated the long-term survival and incidence of secondary fractures after fragility hip fractures. The 5-year survival rate was 62%, and the mortality risk was seen in patients with GNRI < 92. The 5-year incidence of secondary fracture was 22%, which was significantly higher in patients with a BMI < 20.

Background

Malnutrition negatively influences the postoperative survival of patients with fragility hip fractures (FHFs); however, little is known about their association over the long term.

Objective

This study evaluated the ability of the geriatric nutritional risk index (GNRI) as a risk factor for long-term mortality after FHFs.

Methods

This study included 623 Japanese patients with FHFs over the age of 60 years. We prospectively collected data on admission and during hospitalization and assessed the patients’ conditions after discharge through a questionnaire. We examined the long-term mortality and the incidence of secondary FHFs and assessed the prognostic factors.

Results

The mean observation period was 4.0 years (range 0–7 years). The average age at the time of admission was 82 years (range 60–101 years). The overall survival after FHFs (1 year, 91%; 5 years, 62%) and the incidence of secondary FHFs were high (1 year, 4%; 5 years, 22%). The multivariate Cox proportional hazard analysis revealed the risk factors for mortality as older age (hazard ratio [HR] 1.04), male sex (HR 1.96), lower GNRI score (HR 0.96), comorbidities (malignancy, HR 2.51; ischemic heart disease, HR 2.24; revised Hasegawa dementia scale ≤ 20, HR 1.64), no use of active vitamin D3 on admission (HR 0.46), and a lower Barthel index (BI) (on admission, HR 1.00; at discharge, HR 0.99). The GNRI scores were divided into four risk categories: major risk (GNRI, < 82), moderate risk (82–91), low risk (92–98), and no risk (> 98). Patients at major and moderate risks of GNRI had a significantly lower overall survival rate (p < 0.001). Lower body mass index (BMI) was also identified as a prognostic factor for secondary FHFs (HR 0.88 [p = 0.004]).

Conclusions

We showed that older age, male sex, a lower GNRI score, comorbidities, and a lower BI are risk factors for mortality following FHFs. GNRI is a novel and simple predictor of long-term survival after FHFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADL:

Activities of daily living

BI:

Barthel index

BW:

Body weight

DVT:

Deep vein thrombosis

FHFs:

Fragility hip fractures

GNRI:

Geriatric nutritional risk index

HDS-R:

Hasegawa dementia rating scale-revised

PTH:

Parathyroid hormone

References

  1. Diamantopoulos AP, Hoff M, Skoie IM, Hochberg M, Haugeberg G (2013) Short- and long-term mortality in males and females with fragility hip fracture in Norway. A population-based study. Clin Interv Aging 8:817–823

    PubMed  PubMed Central  Google Scholar 

  2. Kimura A, Matsumoto Y, Wakata Y, Oyamada A, Ohishi M, Fujiwara T, Ikuta K, Tsuchiya K, Tayama N, Tomari S et al (2019) Predictive factors of mortality of patients with fragility hip fractures at 1 year after discharge: a multicenter, retrospective study in the northern Kyushu district of Japan. J Orthop Surg (Hong Kong) 27(3):2309499019866965

    PubMed  Google Scholar 

  3. Sánchez-Castellano C, Martín-Aragón S, Bermejo-Bescós P, Vaquero-Pinto N, Miret-Corchado C (2020) Merello de Miguel A, Cruz-Jentoft AJ: Biomarkers of sarcopenia in very old patients with hip fracture. J Cachexia Sarcopenia Muscle 11(2):478–486

    PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Wu X, Chen J, Xu W, Liang X, Huang W, Liao J (2020) Nutritional condition analysis of the older adult patients with femoral neck fracture. Clin Nutr 39(4):1174–1178

    PubMed  Google Scholar 

  5. Jiang S, Ding Y, Kang L (2022) Impact of sarcopenia on intertrochanteric femoral fracture in the elderly. PeerJ 10:e13445

    PubMed  PubMed Central  Google Scholar 

  6. Iida H, Seki T, Sakai Y, Watanabe T, Wakao N, Matsui H, Imagama S (2021) Low muscle mass affect hip fracture treatment outcomes in older individuals: a single-institution case-control study. BMC Musculoskelet Disord 22(1):259

    PubMed  PubMed Central  Google Scholar 

  7. Chen YP, Kuo YJ, Hung SW, Wen TW, Chien PC, Chiang MH, Maffulli N, Lin CY (2021) Loss of skeletal muscle mass can be predicted by sarcopenia and reflects poor functional recovery at one year after surgery for geriatric hip fractures. Injury 52(11):3446–3452

    PubMed  Google Scholar 

  8. Kim YK, Yi SR, Lee YH, Kwon J, Jang SI, Park SH (2018) Effect of sarcopenia on postoperative mortality in osteoporotic hip fracture patients. J Bone Metab 25(4):227–233

    PubMed  PubMed Central  Google Scholar 

  9. Sawalha S, Parker MJ (2012) Characteristics and outcome in patients sustaining a second contralateral fracture of the hip. J Bone Joint Surg Br 94(1):102–106

    CAS  PubMed  Google Scholar 

  10. Ryg J, Rejnmark L, Overgaard S, Brixen K, Vestergaard P (2009) Hip fracture patients at risk of second hip fracture: a nationwide population-based cohort study of 169,145 cases during 1977-2001. J Bone Miner Res 24(7):1299–1307

    PubMed  Google Scholar 

  11. Ho AWH, Wong SH (2020) Second hip fracture in Hong Kong - incidence, demographics, and mortality. Osteoporos Sarcopenia 6(2):71–74

    PubMed  PubMed Central  Google Scholar 

  12. Wong RMY, Ho WT, Wai LS, Li W, Chau WW, Chow KS, Cheung WH (2019) Fragility fractures and imminent fracture risk in Hong Kong: one of the cities with longest life expectancies. Arch Osteoporos 14(1):104

    PubMed  Google Scholar 

  13. Bai J, Zhang P, Liang X, Wu Z, Wang J, Liang Y (2018) Association between dementia and mortality in the elderly patients undergoing hip fracture surgery: a meta-analysis. J Orthop Surg Res 13(1):298

    PubMed  PubMed Central  Google Scholar 

  14. Chang W, Lv H, Feng C, Yuwen P, Wei N, Chen W, Zhang Y (2018) Preventable risk factors of mortality after hip fracture surgery: systematic review and meta-analysis. Int J Surg 52:320–328

    PubMed  Google Scholar 

  15. Diamantopoulos AP, Hoff M, Hochberg M, Haugeberg G (2013) Predictors of short- and long-term mortality in males and females with hip fracture - a prospective observational cohort study. PloS One 8(10):e78169

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Angthong C, Suntharapa T, Harnroongroj T (2009) Major risk factors for the second contralateral hip fracture in the elderly. Acta Orthop Traumatol Turc 43(3):193–198

    PubMed  Google Scholar 

  17. Colón-Emeric CS, Lyles KW, Su G, Pieper CF, Magaziner JS, Adachi JD, Bucci-Rechtweg CM, Haentjens P, Boonen S (2011) Clinical risk factors for recurrent fracture after hip fracture: a prospective study. Calcif Tissue Int 88(5):425–431

    PubMed  Google Scholar 

  18. Kirk B, Phu S, Brennan-Olsen SL, Bani Hassan E, Duque G (2020) Associations between osteoporosis, the severity of sarcopenia and fragility fractures in community-dwelling older adults. Eur Geriatr Med 11(3):443–450

    PubMed  Google Scholar 

  19. Malafarina V, Reginster JY, Cabrerizo S, Bruyère O, Kanis JA, Martinez JA, Zulet MA (2018) Nutritional status and nutritional treatment are related to outcomes and mortality in older adults with hip fracture. Nutrients 10(5):555

    PubMed  PubMed Central  Google Scholar 

  20. Zanetti M, Gortan Cappellari G, Ratti C, Ceschia G, Murena L, De Colle P, Barazzoni R (2019) Poor nutritional status but not cognitive or functional impairment per se independently predict 1 year mortality in elderly patients with hip-fracture. Clin Nutr 38(4):1607–1612

    PubMed  Google Scholar 

  21. Inoue T, Misu S, Tanaka T, Sakamoto H, Iwata K, Chuman Y, Ono R (2017) Pre-fracture nutritional status is predictive of functional status at discharge during the acute phase with hip fracture patients: a multicenter prospective cohort study. Clin Nutr 36(5):1320–1325

    PubMed  Google Scholar 

  22. Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent JP, Nicolis I, Benazeth S, Cynober L, Aussel C (2005) Geriatric nutritional risk index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr 82(4):777–783

    CAS  PubMed  Google Scholar 

  23. Ruan GT, Zhang Q, Zhang X, Tang M, Song MM, Zhang XW, Li XR, Zhang KP, Ge YZ, Yang M et al (2021) Geriatric nutrition risk index: prognostic factor related to inflammation in elderly patients with cancer cachexia. J Cachexia Sarcopenia Muscle 12(6):1969–1982

    PubMed  PubMed Central  Google Scholar 

  24. Hao L, Carson JL, Schlussel Y, Noveck H, Shapses SA (2020) Vitamin D deficiency is associated with reduced mobility after hip fracture surgery: a prospective study. Am J Clin Nutr 112(3):613–618

    PubMed  PubMed Central  Google Scholar 

  25. Oyamada A, Matsumoto Y, Wakata Y, Kimura A, Ikuta K, Tsuchiya K, Tayama N, Tomari S, Miyahara H, Mae T et al (2018) Characteristics of patients with fragility hip fractures in the northern Kyushu district in Japan: a multicenter prospective registry based on an electronic data capture system. J Bone Miner Metab 36(5):596–604

    PubMed  Google Scholar 

  26. Fujiwara T, Kondo M, Yamada H, Haraguchi A, Fujimura K, Sakuraba K, Kamura S, Fukushi JI, Miyahara H, Inoue Y et al (2022) Factors affecting patient satisfaction related to cost and treatment effectiveness in rheumatoid arthritis: results from the multicenter observational cohort study, FRANK Registry. Arthritis Res Ther 24(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahoney FI, Barthel DW (1965) Functional evaluation: the Barthel index. Md State Med J 14:61–65

    CAS  PubMed  Google Scholar 

  28. Kanahori M, Matsumoto Y, Fujiwara T, Kimura A, Tsutsui T, Arisumi S, Oyamada A, Ohishi M, Ikuta K, Tsuchiya K et al (2021) Predictive factors of non-treatment and non-persistence to osteoporosis medication after fragility hip fractures at 3 years after discharge: a multicentre, prospective cohort study in the northern Kyushu district of Japan. Arch Osteoporos 16(1):132

    PubMed  Google Scholar 

  29. Forsén L, Sogaard AJ, Meyer HE, Edna T, Kopjar B (1999) Survival after hip fracture: short- and long-term excess mortality according to age and gender. Osteoporos Int 10(1):73–78

    PubMed  Google Scholar 

  30. Chiu A, Chou MY, Liang CK, Lin YT, Wu JW, Hsu YH (2020) Barthel index, but not Lawton and Brody instrumental activities of daily living scale associated with sarcopenia among older men in a veterans' home in southern Taiwan. Eur Geriatr Med 11(5):737–744

    PubMed  Google Scholar 

  31. Takahashi K, Kubo A, Ishimura K, Fukui T, Tamura T (2018) Correlation among sarcopenia, malnutrition and activities of daily living in patients with vertebral compression fractures: a comparison based on admission and discharge parameters evaluating these conditions. J Phys Ther Sci 30(12):1401–1407

    PubMed  PubMed Central  Google Scholar 

  32. Piirtola M, Vahlberg T, Löppönen M, Räihä I, Isoaho R, Kivelä SL (2008) Fractures as predictors of excess mortality in the aged-a population-based study with a 12-year follow-up. Eur J Epidemiol 23(11):747–755

    PubMed  Google Scholar 

  33. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ (2005) Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma 19(1):29–35

    PubMed  Google Scholar 

  34. Hu F, Jiang C, Shen J, Tang P, Wang Y (2012) Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43(6):676–685

    PubMed  Google Scholar 

  35. Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y (2019) Sarcopenia. Joint Bone Spine 86(3):309–314

    PubMed  Google Scholar 

  36. Kotera A (2019) Geriatric nutritional risk index and controlling nutritional status score can predict postoperative 180-day mortality in hip fracture surgeries. JA Clin Rep 5(1):62

    PubMed  PubMed Central  Google Scholar 

  37. Bohl DD, Shen MR, Hannon CP, Fillingham YA, Darrith B, Della Valle CJ (2017) Serum albumin predicts survival and postoperative course following surgery for geriatric hip fracture. J Bone Joint Surg Am 99(24):2110–2118

    PubMed  Google Scholar 

  38. Corti MC, Guralnik JM, Salive ME, Sorkin JD (1994) Serum albumin level and physical disability as predictors of mortality in older persons. Jama 272(13):1036–1042

    CAS  PubMed  Google Scholar 

  39. Dong CH, Chen SY, Zeng HL, Yang B, Pan J (2021) Geriatric nutritional risk index predicts all-cause mortality in patients with heart failure: a systematic review and meta-analysis. Clinics (Sao Paulo) 76:e2258

    PubMed  Google Scholar 

  40. Sasaki M, Miyoshi N, Fujino S, Ogino T, Takahashi H, Uemura M, Matsuda C, Yamamoto H, Mizushima T, Mori M et al (2020) The geriatric nutritional risk index predicts postoperative complications and prognosis in elderly patients with colorectal cancer after curative surgery. Sci Rep 10(1):10744

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kushiyama S, Sakurai K, Kubo N, Tamamori Y, Nishii T, Tachimori A, Inoue T, Maeda K (2018) The preoperative geriatric nutritional risk index predicts postoperative complications in elderly patients with gastric cancer undergoing gastrectomy. In Vivo 32(6):1667–1672

    PubMed  PubMed Central  Google Scholar 

  42. Wiklund R, Toots A, Conradsson M, Olofsson B, Holmberg H, Rosendahl E, Gustafson Y, Littbrand H (2016) Risk factors for hip fracture in very old people: a population-based study. Osteoporos Int 27(3):923–931

    CAS  PubMed  Google Scholar 

  43. Wu LC, Kao HH, Chen HJ, Huang PF (2021) Preliminary screening for sarcopenia and related risk factors among the elderly. Medicine (Baltimore) 100(19):e25946

    PubMed  PubMed Central  Google Scholar 

  44. Yoo JI, Ha YC, Choi H, Kim KH, Lee YK, Koo KH, Park KS (2018) Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture. Asia Pac J Clin Nutr 27(3):527–532

    PubMed  Google Scholar 

  45. de Ulíbarri Pérez JI, Fernández G, Rodríguez Salvanés F, Díaz López AM (2014) Nutritional screening; control of clinical undernutrition with analytical parameters. Nutr Hosp 29(4):797–811

    PubMed  Google Scholar 

  46. Yuan X, Huang B, Wang R, Tie H, Luo S (2022) The prognostic value of advanced lung cancer inflammation index (ALI) in elderly patients with heart failure. Front Cardiovasc Med 9:934551

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yokoyama K, Ukai T, Watanabe M (2021) Effect of nutritional status before femoral neck fracture surgery on postoperative outcomes: a retrospective study. BMC Musculoskelet Disord 22(1):1027

    PubMed  PubMed Central  Google Scholar 

  48. Lelli D, Calle A, Pérez LM, Onder G, Morandi A, Ortolani E, Colominas M, Pedone C, Inzitari M (2019) Nutritional status and functional outcomes in older adults admitted to geriatric rehabilitations: the SAFARI study. J Am Coll Nutr 38(5):441–446

    PubMed  Google Scholar 

  49. Watanabe T, Matsushima M, Kaneko M, Aoki T, Sugiyama Y, Fujinuma Y (2022) Death at home versus other locations in older people receiving physician-led home visits: a multicenter prospective study in Japan. Geriatr Gerontol Int 22(12):1005–1012

    PubMed  PubMed Central  Google Scholar 

  50. Ryrsø CK, Hegelund MH, Dungu AM, Faurholt-Jepsen D, Pedersen BK, Ritz C, Krogh-Madsen R, Lindegaard B (2022) Association between Barthel index, grip strength, and physical activity level at admission and prognosis in community-acquired pneumonia: a prospective cohort study. J Clin Med 11(21):6326

    PubMed  PubMed Central  Google Scholar 

  51. Mima K, Hayashi H, Yumoto S, Matsumoto T, Tsukamoto M, Miyata T, Nakagawa S, Nitta H, Baba H (2022) Disability in perioperative activities of daily living is associated with worse survival outcomes following hepatic resection in patients with intrahepatic cholangiocarcinoma. Hepatol Res

  52. Floyd JL, Mann RB, Shaw A (1991) Changes in quantitative SPECT thallium-201 results associated with the use of energy-weighted acquisition. J Nucl Med 32(5):805–807

    CAS  PubMed  Google Scholar 

  53. Tarazona-Santabalbina FJ, Belenguer-Varea A, Rovira-Daudi E, Salcedo-Mahiques E, Cuesta-Peredó D, Doménech-Pascual JR, Salvador-Pérez MI, Avellana-Zaragoza JA (2012) Early interdisciplinary hospital intervention for elderly patients with hip fractures : functional outcome and mortality. Clinics (Sao Paulo) 67(6):547–556

    PubMed  Google Scholar 

  54. Hide G, Gray A, Harrison CM, Tait A (1989) Identification of an epidermal growth factor receptor homologue in trypanosomes. Mol Biochem Parasitol 36(1):51–59

    CAS  PubMed  Google Scholar 

  55. da Casa C, Pablos-Hernández C, González-Ramírez A, Julián-Enriquez JM, Blanco JF (2019) Geriatric scores can predict long-term survival rate after hip fracture surgery. BMC Geriatr 19(1):205

    PubMed  PubMed Central  Google Scholar 

  56. Wiedl A, Förch S, Fenwick A, Mayr E (2022) Prognostic value of orthogeriatric assessment parameters on mortality: a 2-year follow-up. Eur J Trauma Emerg Surg 48(4):2905–2914

    PubMed  Google Scholar 

  57. Kristensen MT, Öztürk B, Röck ND, Ingeman A, Palm H, Pedersen AB (2019) Regaining pre-fracture basic mobility status after hip fracture and association with post-discharge mortality and readmission-a nationwide register study in Denmark. Age Ageing 48(2):278–284

    PubMed  Google Scholar 

  58. Kristensen MT, Kehlet H (2018) The basic mobility status upon acute hospital discharge is an independent risk factor for mortality up to 5 years after hip fracture surgery. Acta Orthop 89(1):47–52

    PubMed  Google Scholar 

  59. Volkert D, Beck AM, Cederholm T, Cereda E, Cruz-Jentoft A, Goisser S, de Groot L, Großhauser F, Kiesswetter E, Norman K et al (2019) Management of malnutrition in older patients-current approaches, evidence and open questions. J Clin Med 8(7):974

    PubMed  PubMed Central  Google Scholar 

  60. Bergman J, Nordström A, Hommel A, Kivipelto M, Nordström P (2019) Bisphosphonates and mortality: confounding in observational studies? Osteoporos Int 30(10):1973–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kranenburg G, Bartstra JW, Weijmans M, de Jong PA, Mali WP, Verhaar HJ, Visseren FLJ, Spiering W (2016) Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis 252:106–115

    CAS  PubMed  Google Scholar 

  62. Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, Hyldstrup L, Recknor C, Nordsletten L, Moore KA et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357(18):1799–1809

    CAS  PubMed  Google Scholar 

  63. Nurmi-Lüthje I, Sund R, Juntunen M, Lüthje P (2011) Post-hip fracture use of prescribed calcium plus vitamin D or vitamin D supplements and antiosteoporotic drugs is associated with lower mortality: a nationwide study in Finland. J Bone Miner Res 26(8):1845–1853

    PubMed  Google Scholar 

  64. Ingstad F, Solberg LB, Nordsletten L, Thorsby PM, Hestnes I, Frihagen F (2021) Vitamin D status and complications, readmissions, and mortality after hip fracture. Osteoporos Int 32(5):873–881

    CAS  PubMed  Google Scholar 

  65. Zittermann A, Koerfer R (2008) Vitamin D in the prevention and treatment of coronary heart disease. Curr Opin Clin Nutr Metab Care 11(6):752–757

    CAS  PubMed  Google Scholar 

  66. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Garland CF, Gorham ED, Mohr SB, Garland FC (2009) Vitamin D for cancer prevention: global perspective. Ann Epidemiol 19(7):468–483

    PubMed  Google Scholar 

  68. Wu ST, Chen JF, Tsai CJ (2021) The impact of bisphosphonates on mortality and cardiovascular risk among osteoporosis patients after cardiovascular disease. J Formos Med Assoc 120(11):1957–1966

    CAS  PubMed  Google Scholar 

  69. Johansson H, Siggeirsdóttir K, Harvey NC, Odén A, Gudnason V, McCloskey E, Sigurdsson G, Kanis JA (2017) Imminent risk of fracture after fracture. Osteoporos Int 28(3):775–780

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for the English-language review.

Funding

This research was funded in part by the Japan Society for the Promotion of Science’s Grants-in-Aid for Young Scientists (grant number JP18K16626) and the Japanese Orthopaedic Association (JOA-Subsidized Science Project Research 2022-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fujiwara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 4
figure 4

The study’s flow chart, which clarifies the inclusion and exclusion criteria

Table 4 Patients’ baseline characteristics and follow-up data by geriatric nutritional risk index (GNRI) class

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsui, T., Fujiwara, T., Matsumoto, Y. et al. Geriatric nutritional risk index as the prognostic factor in older patients with fragility hip fractures. Osteoporos Int 34, 1207–1221 (2023). https://doi.org/10.1007/s00198-023-06753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06753-3

Keywords

Navigation