Skip to main content

Advertisement

Log in

Health effects associated with serum calcium concentrations: evidence from MR-PheWAS analysis in UK Biobank

  • Short Communication
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We conducted a phenome-wide Mendelian randomization analysis (MR-PheWAS) to survey health effects associated with high normal serum calcium. We found causal evidence for conditions related to renal function, bone and joint health, and cardiovascular risk. These conditions collectively suggest that tissue calcification may be a key mechanism through which serum calcium influences health.

Introduction

Calcium is essential for the normal functioning of the cardiovascular system, muscles, and nerves. In this MR-PheWAS study, we sought to capture the totality of health effects associated with high normal serum calcium.

Methods

We used data from up to 337,535 UK Biobank participants, and tested for associations between calcium genetic score (calcium-GS) and 925 disease outcomes, with follow-up analyses using complementary MR methods.

Results

Calcium-GS was robustly associated with serum calcium concentration (F statistics = 349). After multiple testing correction (P < 1.62E-4), we saw genetic evidence for an association between high serum calcium and urinary calculus (OR per 1 mg/dl 3.5, 95%CI 1.3–9.2), renal colic (9.1, 95%CI 2.5–33.5), and allergy/adverse effect of penicillin (2.2, 95%CI 1.5–3.3). Secondary analyses with independent replication from consortia meta-analyses suggested further effects on myocardial infarction and osteoarthrosis.

Conclusion

We found causal evidence for effects of high normal serum calcium with conditions related to renal function, bone and joint health, and cardiovascular risk, which may collectively reflect influences on tissue calcification and immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Mundy GR, Guise TA (1999) Hormonal control of calcium homeostasis. Clin Chem 45:1347–1352

    Article  CAS  Google Scholar 

  2. O'Seaghdha CM, Wu H, Yang Q, Kapur K, Guessous I, Zuber AM, Köttgen A, Stoudmann C, Teumer A, Kutalik Z, Mangino M, Dehghan A, Zhang W, Eiriksdottir G, Li G, Tanaka T, Portas L, Lopez LM, Hayward C, Lohman K, Matsuda K, Padmanabhan S, Firsov D, Sorice R, Ulivi S, Brockhaus AC, Kleber ME, Mahajan A, Ernst FD, Gudnason V, Launer LJ, Mace A, Boerwinckle E, Arking DE, Tanikawa C, Nakamura Y, Brown MJ, Gaspoz JM, Theler JM, Siscovick DS, Psaty BM, Bergmann S, Vollenweider P, Vitart V, Wright AF, Zemunik T, Boban M, Kolcic I, Navarro P, Brown EM, Estrada K, Ding J, Harris TB, Bandinelli S, Hernandez D, Singleton AB, Girotto G, Ruggiero D, d'Adamo AP, Robino A, Meitinger T, Meisinger C, Davies G, Starr JM, Chambers JC, Boehm BO, Winkelmann BR, Huang J, Murgia F, Wild SH, Campbell H, Morris AP, Franco OH, Hofman A, Uitterlinden AG, Rivadeneira F, Völker U, Hannemann A, Biffar R, Hoffmann W, Shin S–Y, Lescuyer P, Henry H, Schurmann C, The SUNLIGHT consortium, The GEFOS consortium, Munroe PB, Gasparini P, Pirastu N, Ciullo M, Gieger C, März W, Lind L, Spector TD, Smith AV, Rudan I, Wilson JF, Polasek O, Deary IJ, Pirastu M, Ferrucci L, Liu Y, Kestenbaum B, Kooner JS, Witteman JCM, Nauck M, Kao WHL, Wallaschofski H, Bonny O, Fox CS, Bochud M (2013) Meta-analysis of genome-wide association studies identifies six new loci for serum calcium concentrations. PLoS Genet 9:e1003796

    Article  CAS  Google Scholar 

  3. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601

    Article  Google Scholar 

  4. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12:e1001779

    Article  Google Scholar 

  5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J (2018) The UK biobank resource with deep phenotyping and genomic data. Nature 562:203–209

    Article  CAS  Google Scholar 

  6. Wei WQ, Bastarache LA, Carroll RJ, Marlo JE, Osterman TJ, Gamazon ER, Cox NJ, Roden DM, Denny JC (2017) Evaluating phecodes, clinical classification software, and ICD-9-CM codes for phenome-wide association studies in the electronic health record. PLoS One 12:e0175508

    Article  Google Scholar 

  7. Verma A, Bradford Y, Dudek S, Lucas AM, Verma SS, Pendergrass SA, Ritchie MD (2018) A simulation study investigating power estimates in phenome-wide association studies. BMC Bioinformatics 19:120

    Article  Google Scholar 

  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  9. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525

    Article  Google Scholar 

  10. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314

    Article  Google Scholar 

  11. Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46:1985–1998

    Article  Google Scholar 

  12. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50:693–698

    Article  CAS  Google Scholar 

  13. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. eLife 7

  14. Carroll RJ, Bastarache L, Denny JC (2014) R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30:2375–2376

    Article  CAS  Google Scholar 

  15. Bove-Fenderson E, Mannstadt M (2018) Hypocalcemic disorders. Best Pract Res Clin Endocrinol Metab 32:639–656

    Article  CAS  Google Scholar 

  16. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163

    Article  Google Scholar 

  17. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683

    Article  CAS  Google Scholar 

  18. Manian FA, Stone WJ, Alford RH (1990) Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis 12:236–249

    Article  CAS  Google Scholar 

  19. Larsson SC, Burgess S, Michaelsson K (2017) Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction. Jama 318:371–380

    Article  CAS  Google Scholar 

  20. Li H, Zeng C, Wei J, Yang T, Gao SG, Li YS, Luo W, Xiao WF, Xiong YL, Lei GH (2016) Serum calcium concentration is inversely associated with radiographic knee osteoarthritis: a cross-sectional study. Medicine 95:e2838

    Article  CAS  Google Scholar 

  21. Vig M, Kinet JP (2009) Calcium signaling in immune cells. Nat Immunol 10:21–27

    Article  CAS  Google Scholar 

  22. Lutsey PL, Alonso A, Michos ED, Loehr LR, Astor BC, Coresh J, Folsom AR (2014) Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 100:756–764

    Article  CAS  Google Scholar 

  23. Gkatzionis A, Burgess S (2018) Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? Int J Epidemiol 48:691–701

  24. Relton CL, Davey Smith G (2012) Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 41:161–176

    Article  Google Scholar 

Download references

Funding

This study was funded by the Australian National Health and Medical Research Foundation (NHMRC), grant number 1123603.

Author information

Authors and Affiliations

Author notes

  1. H.A. Morris is deceased. This paper is dedicated to his memory.

    • H. A. Morris
Authors

Corresponding author

Correspondence to E. Hyppönen.

Ethics declarations

Ethical approval

UK Biobank was approved by the National Information Governance Board for Health and Social Care and North West Multicentre Research Ethics Committee (11/NW/0382). The present study was conducted under application number 20175.

Conflict of interests

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Morris, H.A. & Hyppönen, E. Health effects associated with serum calcium concentrations: evidence from MR-PheWAS analysis in UK Biobank. Osteoporos Int 30, 2343–2348 (2019). https://doi.org/10.1007/s00198-019-05118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-05118-z

Keywords

Navigation