Skip to main content
Log in

Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Postmenopausal osteoporosis is a major health problem with important genetic factors in postmenopausal women. We explored the relationship between SQRDL and osteoporosis in a cohort of 1006 patients and 2027 controls from Han Chinese postmenopausal women. Our evidence supported the significant role of SQRDL in the etiology of postmenopausal osteoporosis.

Introduction

Postmenopausal osteoporosis (PMOP) is a metabolic bone disease leading to progressive bone loss and the deterioration of the bone microarchitecture. The sulfide-quinone reductase-like protein is an important enzyme regulating the cellular hydrogen sulfide levels, and it can regulate bone metabolism balance in postmenopausal women. In this study, we aimed to investigate whether SQRDL is associated with susceptibility to PMOP in the Han Chinese population.

Methods

A total of 3033 postmenopausal women, comprised of 1006 cases and 2027 controls, were recruited in the study. Twenty-two SNPs were selected for genotyping to evaluate the association of SQRDL gene with BMD and PMOP. Association analyses in both single marker and haplotype levels were performed for PMOP. Bone mineral density (BMD) was also utilized as a quantitative phenotype in further analyses. Bioinformatics tools were applied to predict the functional consequences of targeted polymorphisms in SQRDL.

Results

The SNP rs1044032 (P = 6.42 × 10−5, OR = 0.80) was identified as significantly associated with PMOP. Three SNPs (rs1044032, rs2028589, and rs12913151) were found to be significantly associated with BMD. Although limited functional significance can be obtained for these polymorphisms, significant hits for association with PMOP were found. Moreover, further association analyses with BMD identified three SNPs with significantly independent effects.

Conclusions

Our evidence supported the significant role of SQRDL in the etiology of PMOP and suggest that it may be a genetic risk factor for BMD and osteoporosis in Han Chinese postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metabolic Bone Disease Related Res 4:1

    Article  CAS  Google Scholar 

  2. Appelman-Dijkstra NM, Papapoulos SE (2015) Modulating bone resorption and bone formation in opposite directions in the treatment of postmenopausal osteoporosis. Drugs 75:1049–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stepan JJ, Burr DB, Pavo I, Sipos A, Michalska D, Li J, Fahrleitner-Pammer A, Petto H, Westmore M, Michalsky D, Sato M, Dobnig H (2007) Low bone mineral density is associated with bone microdamage accumulation in postmenopausal women with osteoporosis. Bone 41:378–385

    Article  PubMed  Google Scholar 

  5. Musumeci M, Vadala G, Tringali G, Insirello E, Roccazzello AM, Simpore J, Musumeci S (2009) Genetic and environmental factors in human osteoporosis from Sub-Saharan to Mediterranean areas. J Bone Miner Metab 27:424–434

    Article  PubMed  CAS  Google Scholar 

  6. Sonoda T, Takada J, Iba K, Asakura S, Yamashita T, Mori M (2012) Interaction between ESRalpha polymorphisms and environmental factors in osteoporosis. J Orthop Res 30:1529–1534

    Article  PubMed  CAS  Google Scholar 

  7. Ferrari S (2008) Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab 22:723–735

    Article  PubMed  CAS  Google Scholar 

  8. Ackermann M, Kubitza M, Hauska G, Pina AL (2014) The vertebrate homologue of sulfide-quinone reductase in mammalian mitochondria. Cell Tissue Res 358:779–792

    Article  PubMed  CAS  Google Scholar 

  9. Griesbeck C, Schutz M, Schodl T, Bathe S, Nausch L, Mederer N, Vielreicher M, Hauska G (2002) Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis. Biochemistry-Us 41:11552–11565

    Article  CAS  Google Scholar 

  10. Rapposelli S, Gambari L, Digiacomo M, Citi V, Lisignoli G, Manferdini C, Calderone V, Grassi F (2017) A novel H2S-releasing amino-bisphosphonate which combines bone anti-catabolic and anabolic functions. Sci Rep 7:11940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, du J, Ambudkar IS, Shi S (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grassi F, Tyagi AM, Calvert JW, Gambari L, Walker LD, Yu M, Robinson J, Li JY, Lisignoli G, Vaccaro C, Adams J, Pacifici R (2016) Hydrogen sulfide is a novel regulator of bone formation implicated in the bone loss induced by estrogen deficiency. J Bone Miner Res 31:949–963

    Article  PubMed  CAS  Google Scholar 

  13. Benetti LR, Campos D, Gurgueira SA, Vercesi AE, Guedes CEV, Santos KL, Wallace JL, Teixeira SA, Florenzano J, Costa SKP, Muscará MN, Ferreira HHA (2013) Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur J Pharmacol 698:463–469

    Article  PubMed  CAS  Google Scholar 

  14. Banerjee Mustafi S, Chakraborty PK, Dey RS, Raha S (2009) Heat stress upregulates chaperone heat shock protein 70 and antioxidant manganese superoxide dismutase through reactive oxygen species (ROS), p38MAPK, and Akt. Cell Stress Chaperones 14:579–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vacek TP, Qipshidze N, Tyagi SC (2013) Hydrogen sulfide and sodium nitroprusside compete to activate/deactivate MMPs in bone tissue homogenates. Vasc Health Risk Manag 9:117–123

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhai Y, Tyagi SC, Tyagi N (2017) Cross-talk of microRNA and hydrogen sulfide: a novel therapeutic approach for bone diseases. Biomed Pharmacother 92:1073–1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang Q, Liu S, Li T, Yuan L, Liu H, Wang X, Wang F, Wang S, Hao A, Liu D, Wang Z (2016 Sep 6) Preconditioning of bone marrow mesenchymal stem cells with hydrogen sulfide improves their therapeutic potential. Oncotarget 7:58089–58104

    PubMed  PubMed Central  Google Scholar 

  18. Jin HS, Kim J, Park S, Park E, Kim BY, Choi VN, Yoo YH, Kim BT, Jeong SY (2015) Association of the I264T variant in the sulfide quinone reductase-like (SQRDL) gene with osteoporosis in Korean postmenopausal women. PLoS One 10:e0135285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Guan F, Wei S, Feng J, Zhang C, Xing B, Zhang H, Gao C, Yang H, Li S (2012) Association study of a new schizophrenia susceptibility locus of 10q24.32–33 in a Han Chinese population. Schizophr Res 138:63–68

    Article  PubMed  Google Scholar 

  20. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  22. CR T (2016) Team RDC.R: a language and environment for statistical computing. R Foundation Statistical Computing: Vienna, Austria. Computing 1:12–21

    Google Scholar 

  23. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder M (2013) Dynamic trans-acting factor colocalization in human cells. Cell 155:713–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ng PC (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Consortium GT (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  Google Scholar 

  28. Guan F, Zhang C, Wei S, Zhang H, Gong X, Feng J, Gao C, Su R, Yang H, Li S (2012) Association of PDE4B polymorphisms and schizophrenia in northwestern Han Chinese. Hum Genet 131:1047–1056

    Article  PubMed  CAS  Google Scholar 

  29. Guan F, Zhang B, Yan T, Li L, Liu F, Li T, Feng Z, Zhang B, Liu X, Li S (2014) MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. Schizophr Res 152:97–104

    Article  PubMed  Google Scholar 

  30. Chen G, Guan F, Lin H, Li L, Fu D (2015) Genetic analysis of common variants in the HDAC2 gene with schizophrenia susceptibility in Han Chinese. J Hum Genet 60:479–484

    Article  PubMed  CAS  Google Scholar 

  31. Guan F, Li L, Qiao C, Chen G, Yan T, Li T, Zhang T, Liu X (2015) Evaluation of genetic susceptibility of common variants in CACNA1D with schizophrenia in Han Chinese. Sci Rep 5:12935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang B, Guan F, Chen G, Lin H, Zhang T, Feng J, Li L, Fu D (2015) Common variants in SLC1A2 and schizophrenia: association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr Res 169:128–134

    Article  PubMed  Google Scholar 

  33. Guan F, Lin H, Chen G, Li L, Chen T, Liu X, Han J, Li T (2016) Evaluation of association of common variants in HTR1A and HTR5A with schizophrenia and executive function. Sci Rep 6:38048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Guan F, Zhang T, Liu X, Han W, Lin H, Li L, Chen G, Li T (2016) Evaluation of voltage-dependent calcium channel gamma gene families identified several novel potential susceptible genes to schizophrenia. Sci Rep 6:24914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Guan F, Wei S, Zhang C, Zhang H, Zhang B, Xing B, Feng Z, Gao C, Liu X, Li S (2013) A population-based association study of 2q32.3 and 8q21.3 loci with schizophrenia in Han Chinese. J Psychiatr Res 47:712–717

    Article  PubMed  Google Scholar 

  36. Yang H, Zhang B, Zhu J, Liu D, Guan F, He X (2013) 4q22.1 contributes to bone mineral density and osteoporosis susceptibility in postmenopausal women of Chinese Han population. PLoS One 8:e80165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Guan F, Niu Y, Zhang T et al (2016) Two-stage association study to identify the genetic susceptibility of a novel common variant of rs2075290 in ZPR1 to type 2 diabetes. Sci Rep 6:29586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guan F, Zhang T, Li L, Fu D, Lin H, Chen G, Chen T (2016) Two-stage replication of previous genome-wide association studies of AS3MT-CNNM2-NT5C2 gene cluster region in a large schizophrenia case-control sample from Han Chinese population. Schizophr Res 176:125–130

    Article  PubMed  Google Scholar 

  39. Jia X, Zhang T, Li L, Fu D, Lin H, Chen G, Liu X, Guan F (2016) Two-stage additional evidence support association of common variants in the HDAC3 with the increasing risk of schizophrenia susceptibility. Am J Med Genet B Neuropsychiatr Genet 171:1105–1111

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was totally supported by the National Natural Science Youth Funds of China (NO. 81601955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liu.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

ESM 1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Yi, X., Zhang, Y. et al. Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene. Osteoporos Int 29, 2041–2047 (2018). https://doi.org/10.1007/s00198-018-4575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4575-9

Keywords

Navigation