Skip to main content
Log in

A meta-analysis of the association between body mass index and risk of vertebral fracture

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We conducted a meta-analysis of prospective studies to assess the association between BMI and incident vertebral fracture. We found that as body mass index (BMI) increases, the risk of vertebral fracture decreases in men, but not in women, suggesting possible gender differences in the relationship of BMI with risk of vertebral fracture.

Introduction

Recent evidence suggests that the relationship between BMI and fracture risk may be site-specific. We conducted a systematic review and meta-analysis of prospective studies to investigate the association between BMI and risk of incident vertebral fracture.

Methods

PubMed and Embase were searched for relevant articles published from inception through February 15, 2017. Extracted relative risks (RR) from the prospective studies were pooled using random-effects meta-analysis.

Results

Six studies were included, with a total of 105,129 participants followed for 3 to 19 years. The pooled RR (95% confidence interval [CI]) for vertebral fracture per each standard deviation increase in BMI was 0.94 (95% CI = 0.80–1.10) with significant heterogeneity (I 2 = 88.0%, p < 0.001). In subgroup analysis by gender, we found a significant inverse association between BMI and risk of vertebral fracture in men (RR = 0.85, 95% CI = 0.73–0.98, n = 25,617 participants) but not in women (RR = 0.98, 95% CI = 0.81–1.20, n = 79,512 participants). Across studies of women not adjusting for bone mineral density (BMD), there was no significant association between BMI and risk of vertebral fracture (RR = 0.91, 95% CI = 0.80–1.04, p = 0.18, n = 72,755 participants). However, BMI was associated with an increased risk of vertebral fracture in studies of women that adjusted for BMD (RR = 1.28, 95% CI = 1.17–1.40, p < 0.001, n = 6757 participants). Substantial heterogeneity was found among studies of women (I 2 = 90.1%, p < 0.001), which was partly explained by the adjustment for BMD (adjusted R 2 = 61%). We found no evidence of publication bias (p = 0.40).

Conclusions

In conclusion, our findings suggest that there might be gender differences in the relationship of BMI with risk of vertebral fracture. Further research is needed, including the assessment of other measures of adiposity, such as visceral adiposity, on the risk of vertebral fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, Nevitt MC, Cummings SR (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767

    Article  CAS  PubMed  Google Scholar 

  2. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    Article  CAS  PubMed  Google Scholar 

  3. Gold DT (1996) The clinical impact of vertebral fractures: quality of life in women with osteoporosis. Bone 18:185S–189S

    Article  CAS  PubMed  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res Off J Am Soc Bone Miner Res 22:465–475

    Article  Google Scholar 

  5. Lr M (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    Article  Google Scholar 

  6. Lr M, Kallmes D (2006) Epidemiology of vertebral fractures: implications for vertebral augmentation. Acad Radiol 13:538–545

    Article  Google Scholar 

  7. Delmas P, Genant H, Crans G, Stock J, Wong M, Siris E, Adachi J (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532

    Article  CAS  PubMed  Google Scholar 

  8. Melton LJ 3rd (1997) Epidemiology of spinal osteoporosis. Spine (Phila Pa 1976) 22:2S–11S

    Article  Google Scholar 

  9. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL (1989) Epidemiol Vertebral Fract Women. Am J Epidemiol 129:1000–1011

    Article  PubMed  Google Scholar 

  10. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  11. Christiansen BA, Bouxsein ML (2010) Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 8:198–204

    Article  PubMed  Google Scholar 

  12. Yeni YN, Zinno MJ, Yerramshetty JS, Zauel R, Fyhrie DP (2011) Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone 49:886–894

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res Off J Am Soc Bone Miner Res 16:2276–2283

    Article  CAS  Google Scholar 

  14. Compston J (2015) Obesity and fractures in postmenopausal women. Curr Opin Rheumatol 27:414–419

    Article  PubMed  Google Scholar 

  15. Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cauley JA (2017) Osteoporosis: fracture epidemiology update 2016. Curr Opin Rheumatol 29:150–156

    Article  PubMed  Google Scholar 

  17. Lacombe J, Cairns BJ, Green J, Reeves GK, Beral V, Armstrong ME (2016) The effects of age, adiposity, and physical activity on the risk of seven site-specific fractures in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 31:1559–1568

    Article  Google Scholar 

  18. Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res Off J Am Soc Bone Miner Res 29:223–233

    Article  Google Scholar 

  19. Compston JE, Flahive J, Hosmer DW et al (2014) Relationship of weight, height, and body mass index with fracture risk at different sites in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). J Bone Miner Res Off J Am Soc Bone Miner Res 29:487–493

    Article  Google Scholar 

  20. Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, Mannarino MR, Scarponi AM, Mannarino E (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab 28:88–93

    Article  PubMed  Google Scholar 

  21. Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G (2012) Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int J established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A 23:67–74

    Article  CAS  Google Scholar 

  22. Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogues X, Compston JE, Diez-Perez A (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res 27:294–300

    Article  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, Niu Y, Du L (2015) The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid-Based Med 8:2–10

    Article  PubMed  Google Scholar 

  25. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  26. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res Ed) 315:629–634

    Article  CAS  Google Scholar 

  27. Roy DK, O'Neill TW, Finn JD et al (2003) Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26

    Article  CAS  PubMed  Google Scholar 

  28. Bredella MA, Lin E, Gerweck AV, Landa MG, Thomas BJ, Torriani M, Bouxsein ML, Miller KK (2012) Determinants of bone microarchitecture and mechanical properties in obese men. J Clin Endocrinol Metab 97:4115–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cohen A, Dempster DW, Recker RR et al (2013) Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab 98:2562–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2013) Association between abdominal obesity and fracture risk: a prospective study. J Clin Endocrinol Metab 98:2478–2483

    Article  CAS  PubMed  Google Scholar 

  31. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Harrington LM, Breggia A, Rosen CJ, Miller KK (2011) Determinants of bone mineral density in obese premenopausal women. Bone 48:748–754

    Article  PubMed  Google Scholar 

  32. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka S, Kuroda T, Saito M, Shiraki M (2013) Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 24:69–76

    Article  CAS  PubMed  Google Scholar 

  34. Papaioannou A, Joseph L, Ioannidis G et al (2005) Risk factors associated with incident clinical vertebral and nonvertebral fractures in postmenopausal women: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A 16:568–578

    Article  Google Scholar 

  35. Nevitt MC, Cummings SR, Stone KL et al (2005) Risk factors for a first-incident radiographic vertebral fracture in women > or =65 years of age: the study of osteoporotic fractures. J Bone Miner Res Off J Am Soc Bone Miner Res 20:131–140

    Article  Google Scholar 

  36. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077

    Article  CAS  PubMed  Google Scholar 

  37. Yang L, Lv X, Wei D, Yue F, Guo J, Zhang T (2016) Metabolic syndrome and the risk of bone fractures: a meta-analysis of prospective cohort studies. Bone 84:52–56

    Article  PubMed  Google Scholar 

  38. Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res Off J Am Soc Bone Miner Res 26:496–502

    Article  Google Scholar 

  39. Villareal DT, Apovian CM, Kushner RF, Klein S (2005) Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes Res 13:1849–1863

    Article  PubMed  Google Scholar 

  40. Reid IR (2010) Fat and bone. Arch Biochem Biophys 503:20–27

    Article  CAS  PubMed  Google Scholar 

  41. Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R (2014) Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab 99:3290–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johansson H, Oden A, Lerner UH et al (2012) High serum adiponectin predicts incident fractures in elderly men: osteoporotic fractures in men (MrOS) Sweden. J Bone Miner Res 27:1390–1396

    Article  CAS  PubMed  Google Scholar 

  44. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2006) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38:317–321

    Article  CAS  PubMed  Google Scholar 

  45. Nickolas TL, McMahon DJ, Shane E (2006) Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 17:3223–3232

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Health grant K23DK100447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kaze.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaze, A.D., Rosen, H.N. & Paik, J.M. A meta-analysis of the association between body mass index and risk of vertebral fracture. Osteoporos Int 29, 31–39 (2018). https://doi.org/10.1007/s00198-017-4294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4294-7

Keywords

Navigation