Skip to main content

Advertisement

Log in

Mechanisms of vasodilation to PTH 1–84, PTH 1–34, and PTHrP 1–34 in rat bone resistance arteries

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Parathyroid hormone (PTH) augments bone metabolism and bone mass when given intermittently. Enhanced blood flow is requisite to support high tissue metabolism. The bone arteries are responsive to all three PTH analogs, which may serve to augment skeletal blood flow during intermittent PTH administration.

Introduction

PTH augments bone metabolism. Yet, mechanisms by which PTH regulates bone blood vessels are unknown. We deciphered (1) endothelium-dependent and endothelium-independent vasodilation to PTH 1–84, PTH 1–34, and PTHrP 1–34, (2) the signaling pathways (i.e., endothelial nitric oxide synthase [eNOS], cyclooxygenase [COX], protein kinase C [PKC], and protein kinase A [PKA]), and (3) receptor activation.

Methods

Femoral principal nutrient arteries (PNAs) were given cumulative doses (10−13–10−8 M) of PTH 1–84, PTH 1–34, and PTHrP 1–34 with and without signaling pathway blockade. Vasodilation was also determined following endothelial cell removal (i.e., denudation), PTH 1 receptor (PTH1R) inhibition and to sodium nitroprusside (SNP; a nitric oxide [NO] donor).

Results

Vasodilation was lowest to PTH 1–34, and maximal dilation was highest to PTHrP 1–34. Inhibition of eNOS reduced vasodilation to PTH 1–84 (−80 %), PTH 1–34 (−66 %), and PTHrP 1–34 (−48 %), evidencing the contribution of NO. Vasodilation following denudation was eliminated (PTH 1–84 and PTHrP 1–34) and impaired (PTH 1–34, 17 % of maximum), highlighting the importance of endothelial cells for PTH signaling. Denuded and intact PNAs responded similarly to SNP. Both PKA and PKC inhibition diminished vasodilation in all three analogs to varying degrees. PTH1R blockade reduced vasodilation to 1, 12, and 12 % to PTH 1–84, PTH 1–34, and PTHrP 1–34, respectively.

Conclusions

Vasodilation of femoral PNAs to the PTH analogs occurred via activation of the endothelial cell PTH1R for NO-mediated events. PTH 1–84 and PTHrP 1–34 primarily stimulated PKA signaling, and PTH 1–34 equally stimulated PKA and PKC signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guyton A, Hall JE (2006) Textbook of medical physiology. Elsevier, Philadelphia

    Google Scholar 

  2. Thiede M, Rodan GA (1988) Expression of a calcium-mobilizing parathyroid hormone-like peptide in lactating mammary tissue. Science 242(4876):278–280

    Article  CAS  PubMed  Google Scholar 

  3. Riddle R, Macica CM, Clemens TL (2008) Vascular, cardiovascular, and neurological actions of parathyroid-related protein. In: Bilezikian J, Raisz LG, Martin TJ (eds) Principles of Bone Biology, vol 1, Elsevier. San Diego, CA, pp 733–748

    Chapter  Google Scholar 

  4. Takahashi K, Inoue D, Ando K, Matsumoto T, Ikeda K, Fujita T (1995) Parathyroid hormone-related peptide as a locally produced vasorelaxant: regulation of its mRNA by hypertension in rats. Biochem Biophys Res Commun 208(1):447–455

    Article  CAS  PubMed  Google Scholar 

  5. Kousteni S, Bilezikian JP (2008) Cellular actions of parathyroid hormone. In: Bilezkian JP, Raisz LG, Martin TJ (eds) Principals of Bone Biology, vol 1, 3rd edn. Acdemic Press, San Diego, CA, pp 639–656

    Chapter  Google Scholar 

  6. Hansen S, Beck Jensen JE, Rasmussen L, Hauge EM, Brixen K (2010) Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case-control study using HR-pQCT. J Bone Miner Res 25(9):1941–1947

    Article  PubMed  Google Scholar 

  7. Horwitz M, Tedesco MB, Sereika SM, Prebehala L, Gundberg CM, Hollis BW, Bisello A, Garcia-Ocaña A, Carneiro RM, Stewart AF (2011) A 7-day continuous infusion of PTH or PTHrP suppresses bone formation and uncouples bone turnover. J Bone Miner Res 26(9):2287–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prisby R, Guignandon A, Vanden-Bossche A, Mac-Way F, Linossier MT, Thomas M, Laroche N, Malaval L, Langer M, Peter ZA, Peyrin F, Vico L, Lafage-Proust MH (2011) Intermittent PTH(1–84) is osteoanabolic but not osteoangiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J Bone Miner Res 26(11):2583–2596

    Article  CAS  PubMed  Google Scholar 

  9. Prisby R, Menezes T, Campbell J (2013) Vasodilation to PTH (1–84) in bone arteries is dependent upon the vascular endothelium and is mediated partially via VEGF signaling. Bone 54(1):68–75

    Article  CAS  PubMed  Google Scholar 

  10. Stewart A, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM (2000) Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone-related protein 1–36, and SDZ-parathyroid hormone 893. J Bone Miner Res 15(8):1517–1525

    Article  CAS  PubMed  Google Scholar 

  11. de Castro L, Lozano D, Portal-Núñez S, Maycas M, De la Fuente M, Caeiro JR, Esbrit P (2012) Comparison of the skeletal effects induced by daily administration of PTHrP (1–36) and PTHrP (107–139) to ovariectomized mice. J Cell Physiol 227(4):1752–1760

    Article  PubMed  Google Scholar 

  12. Horwitz M, Tedesco MB, Gundberg C, Garcia-Ocana A, Stewart AF (2003) Short-term, high-dose parathyroid hormone-related protein as a skeletal anabolic agent for the treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 88(2):569–575

    Article  CAS  PubMed  Google Scholar 

  13. Fogelman I, Fordham JN, Fraser WD, Spector TD, Christiansen C, Morris SA, Fox J (2008) Parathyroid hormone (1–84) treatment of postmenopausal women with low bone mass receiving hormone replacement therapy. Calcif Tissue Int 83(2):85–92

    Article  CAS  PubMed  Google Scholar 

  14. Silverman S, Nasser K (2011) Teriparitide update. Rheum Dis Clin North Am 37(3):471–477

    Article  PubMed  Google Scholar 

  15. Moen M, Scott LJ (2006) Recombinant full-length parathyroid hormone (1–84). Drugs 66(18):2371–2381

    Article  CAS  PubMed  Google Scholar 

  16. Leder B, O’Dea LS, Zanchetta JR, Kumar P, Banks K, McKay K, Lyttle CR, Hattersley G (2015) Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 100(2):697–706

    Article  CAS  PubMed  Google Scholar 

  17. Ureña P, Kong XF, Abou-Samra AB, Jüppner H, Kronenberg HM, Potts JT Jr, Segre GV (1993) Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinology 133(2):617–623

    PubMed  Google Scholar 

  18. Okano K, Wu S, Huang X, Pirola CJ, Juppner H, Abou-Samra AB, Segre GV, Iwasaki K, Fagin JA, Clemens TL (1994) Parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor and its messenger ribonucleic acid in rat aortic vascular smooth muscle cells and UMR osteoblast-like cells: cell-specific regulation by angiotensin-II and PTHrP. Endocrinology 135(3):1093–1099

    CAS  PubMed  Google Scholar 

  19. Jiang B, Morimoto S, Fukuo K, Hirotani A, Tamatani M, Nakahashi T, Nishibe A, Niinobu T, Hata S, Chen S, Ogihara T (1996) Parathyroid hormone-related protein inhibits indothelin-1 production. Hypertension 27(3 Pt 1):360–363

    Article  CAS  PubMed  Google Scholar 

  20. Jiang B, Morimoto S, Yang J, Niinoabu T, Fukuo K, Ogihara T (1998) Expression of parathyroid hormone/parathyroid hormone-related protein receptor in vascular endothelial cells. J Cardiovasc Pharmacol 31(Suppl 1):S142–S144

    Article  CAS  PubMed  Google Scholar 

  21. Charbon G, Hulstaert PF (1974) Augmentation of arterial hepatic and renal flow by extracted and synthetic parathyroid hormone. Endocrinology 95(2):621–626

    Article  CAS  PubMed  Google Scholar 

  22. Pang P, Janssen HF, Yee JA (1980) Effects of synthetic parathyroid hormone on vascular beds of dogs. Pharmacology 21(3):213–222

    Article  CAS  PubMed  Google Scholar 

  23. Pang P, Tenner TE Jr, Yee JA, Yang M, Janssen HF (1980) Hypotensive action of parathyroid hormone preparations on rats and dogs. Proc Natl Acad Sci U S A 77(1):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang P, Yang MC, Shew R, Tenner TE Jr (1985) The vasorelaxant action of parathyroid hormone fragments on isolated rat tail artery. Blood Vessel 22(2):57–64

    CAS  Google Scholar 

  25. Rashid G, Bernheim J, Green J, Benchetrit S (2007) Parathyroid hormone stimulates the endothelial nitric oxide synthase through protein kinase A and C pathways. Nephrol Dial Transplant 10:2831–2837

    Article  Google Scholar 

  26. Rashid G, Bernheim J, Green J, Benchetrit S (2008) Parathyroid hormone stimulates the endothelial expression of vascular endothelial growth factor. Eur J Clin Invest 38(11):798–803

    Article  CAS  PubMed  Google Scholar 

  27. Prisby RD, Ramsey MW, Behnke BJ, Dominguez JM, Donato AJ, Allen MR, Delp MD (2007) Aging reduces skeletal blood flow, endothelium-dependent vasodilation and nitric oxide bioavailability in rats. J Bone Miner Res 22:1280–1288

    Article  CAS  PubMed  Google Scholar 

  28. Sutliff R, Weber CS, Qian J, Miller ML, Clemens TL, Paul RJ (1999) Vasorelaxant properties of parathyroid hormone-related protein in the mouse: evidence for endothelium involvement independent of nitric oxide formation. Endocrinology 140(5):2077–2083

    CAS  PubMed  Google Scholar 

  29. Mok L, Ajiwe E, Martin TJ, Thompson JC, Cooper CW (1989) Parathyroid hormone-related protein relaxes rat gastric smooth muscle and shows cross-desensitization with parathyroid hormone. J Bone Miner Res 4(3):433–439

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto M, Harm SC, Grasser WA, Thiede MA (1992) Parathyroid hormone-related protein in the rat urinary bladder: a smooth muscle relaxant produced locally in response to mechanical stretch. Proc Natl Acad Sci U S A 89:5326–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thiede M, Daifotis AG, Weir EC, Brines ML, Burtis WJ, Ikeda K, Dreyer BE, Garfield RE, Broadus AE (1990) Intrauterine occupancy controls expression of the parathyroid hormone-related peptide gene in preterm rat myometrium. Proc Natl Acad Sci U S A 87(18):6969–6973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cochrane E, McCarthy ID (1991) Rapid effects of parathyroid hormone (1–34) and prostaglandin E2 on bone blood flow and strontium clearance in the rat in vivo. J Endocrinol 131(3):359–365

    Article  CAS  PubMed  Google Scholar 

  33. Roche B, Vanden-Bossche A, Malaval L, Normand M, Jannot M, Chaux R, Vico L, Lafage-Proust MH (2014) Parathyroid hormone 1–84 targets bone vascular structure and perfusion in mice: impacts of its administration regimen and of ovariectomy. J Bone Miner Res 29(7):1608–1618

    Article  CAS  PubMed  Google Scholar 

  34. Driessens M, Vanhoutte PM (1981) Effect of calcitonin, hydrocortisone, and parathyroid hormone on canine bone blood vessels. Am J Physiol 241(1):H91–H94

    CAS  PubMed  Google Scholar 

  35. Stabley J, Prisby RD, Behnke BJ, Delp MD (2013) Chronic skeletal unloading of the rat femur: mechanisms and functional consequences of vascular remodeling. Bone 57(2):355–360

    Article  PubMed  Google Scholar 

  36. Behnke B, Prisby RD, Lesniewski LA, Donato AJ, Olin HM, Delp MD (2006) Influence of ageing and physical activity on vascular morphology in rat skeletal muscle. J Physiol 575(Pt 2):617–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shan J, Pang PK, Lin HC, Yang MC (1994) Cardiovascular effects of human parathyroid hormone and parathyroid hormone-related peptide. J Cardiovasc Pharmacol 23(Suppl 2):S38–S41

    CAS  PubMed  Google Scholar 

  38. Winquist R, Baskin EP, Vlasuk GP (1987) Synthetic tumor-derived human hypercalcemic factor exhibits parathyroid hormone-like vasorelaxation in renal arteries. Biochem Biophys Res Commun 149(1):227–232

    Article  CAS  PubMed  Google Scholar 

  39. Kishimoto H, Tsumura K, Fujioka S, Uchimoto S, Yamashita N, Suzuki R, Yoshimaru K, Shimura M, Sasakawa O, Morii H (1991) Effects of parathyroid hormone-related protein on systemic and regional hemodynamics in conscious rats. A comparison with human parathyroid hormone. Contrib Nephrol 90:72–78

    Article  CAS  PubMed  Google Scholar 

  40. Crass M 3rd, Jayaseelan CL, Darter TC (1987) Effects of parathyroid hormone on blood flow in different regional circulations. Am J Physiol 253(4 Pt 2):R634–R639

    CAS  PubMed  Google Scholar 

  41. Prosser C, Farr VC, Davis SR (1994) Increased mammary blood flow in the lactating goat induced by parathyroid hormone-related protein. Exp Physiol 79(4):565–570

    Article  CAS  PubMed  Google Scholar 

  42. Moseley J, Kubota M, Diefenbach-Jagger H, Wettenhall RE, Kemp BE, Suva LJ, Rodda CP, Ebeling PR, Hudson PJ, Zajac JD, Martin TJ (1987) Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci U S A 84(14):5048–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vargas S, Gillespie MT, Powell GJ, Southby J, Danks JA, Moseley JM, Martin TJ (1992) Localization of parathyroid hormone-related protein mRNA expression in breast cancer and metastatic lesions by in situ hybridization. J Bone Miner Res 7(8):971–979

    Article  CAS  PubMed  Google Scholar 

  44. Kitazawa S, Fukase M, Kitazawa R, Takenaka A, Gotoh A, Fujita T, Maeda S (1991) Immunohistologic evaluation of parathyroid hormone-related protein in human lung cancer and normal tissue with newly developed monoclonal antibody. Cancer 67(4):984–989

    Article  CAS  PubMed  Google Scholar 

  45. Isowa S, Shimo T, Ibaragi S, Kurio N, Okui T, Matsubara K, Hassan NM, Kishimoto K, Sasaki A (2010) PTHrP regulates angiogenesis and bone resorption via VEGF expression. Anticancer Res 30(7):2755–2767

    CAS  PubMed  Google Scholar 

  46. Gunther C, Legowski PA, Lyle RM, Weaver CM, McCabe LD, McCabe GP, Peacock M, Teegarden D (2006) Parathyroid hormone is associated with decreased fat mass in young healthy women. Int J Obes Lond 30(1):94–99

    Article  CAS  PubMed  Google Scholar 

  47. Yan J, Sun W, Zhang J, Goltzman D, Miao D (2012) Bone marrow ablation demonstrates that excess endogenous parathyroid hormone plays distinct roles in trabecular and cortical bone. Am J Pathol 181(1):234–244

    Article  CAS  PubMed  Google Scholar 

  48. Clarke B, Kay Berg J, Fox J, Cyran JA, Lagast H (2014) Pharmacokinetics and pharmacodynamics of subcutaneous recombinant parathyroid hormone (1–84) in patients with hypoparathyroidism: an open-label, single-dose, phase I study. Clin Ther 36(5):722–736

    Article  CAS  PubMed  Google Scholar 

  49. Chu N, Li XN, Chen WL, Xu HR (2007) Pharmacokinetics and safety of recombinant human parathyroid hormone (1–34) (teriparatide) after single ascending doses in Chinese healthy volunteers. Pharmazie 62(11):869–871

    CAS  PubMed  Google Scholar 

  50. Isales C, Sumpio B, Bollag RJ, Zhong Q, Ding KH, Du W, Rodriguez-Commes J, Lopez R, Rosales OR, Gasalla-Herraiz J, McCarthy R, Barrett PQ (2000) Functional parathyroid hormone receptors are present in an umbilical vein endothelial cell line. Am J Physiol Endocrinol Metab 279(3):E654–E662

    CAS  PubMed  Google Scholar 

  51. Usdin T, Hilton J, Vertesi T, Harta G, Segre G, Mezey E (1999) Distribution of the parathyroid hormone 2 receptor in rat: immunolocalization reveals expression by several endocrine cells. Endocrinology 140(7):3363–3371

    CAS  PubMed  Google Scholar 

  52. Usdin T, Gruber C, Bonner TI (1995) Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J Biol Chem 270(26):15455–15458

    Article  CAS  PubMed  Google Scholar 

  53. Usdin T, Hoare SR, Wang T, Mezey E, Kowalak JA (1999) TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat Neurosci 2(11):941–933

    Article  CAS  PubMed  Google Scholar 

  54. Kalinowski L, Dobrucki LW, Malinski T (2001) Nitric oxide as a second messenger in parathyroid hormone-related protein signaling. J Endocrinol 170:433–440

    Article  CAS  PubMed  Google Scholar 

  55. Throckmorton D, Kurscheid-Reich D, Rosales OR, Rodriguez-Commes J, Lopez R, Sumpio B, Zhong Q, Ding KH, McCarthy R, Barrett PQ, Isales CM (2002) Parathyroid hormone effects on signaling pathways in endothelial cells vary with peptide concentration. Peptides 23(1):79–85

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Drugge ED, Yen YC, Blumenthal MR, Pang PK (1984) Effects of synthetic parathyroid hormone on hemodynamics and regional blood flows. Eur J Pharmacol 97(3–4):209–215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the University of Texas at Arlington Research Enhancement Program and the National Institutes of Arthritis and Musculoskeletal and Skin Diseases (7R15AR062882-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Prisby.

Ethics declarations

Conflicts of interest

None

Ethical approval

The procedures employed in this study were approved by the University of Delaware and University of Texas at Arlington Institutional Animal Care and Use Committees, and conform to the Guide for the Care and Use of Laboratory Animals published by the National Institute of Health (NIH Publication No. 85-23 revised 1996).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benson, T., Menezes, T., Campbell, J. et al. Mechanisms of vasodilation to PTH 1–84, PTH 1–34, and PTHrP 1–34 in rat bone resistance arteries. Osteoporos Int 27, 1817–1826 (2016). https://doi.org/10.1007/s00198-015-3460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3460-z

Keywords

Navigation