Skip to main content

Advertisement

Log in

Intraoperative detection of viable bone with fluorescence imaging using Visually Enhanced Lesion Scope in patients with bisphosphonate-related osteonecrosis of the jaw: clinical and pathological evaluation

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2015

Abstract

Summary

There is no standard surgical protocol of bisphosphonate-related osteonecrosis of the jaws (BRONJ), because of the impossibility to visualize this feature intraoperatively. The aim of this study was to introduce how to provide preoperative labeling of the viable bone with minocycline bone fluorescence technique (MBFT) by using VELscope® and investigate histopathologically.

Introduction

The American Association of Oral and Maxillofacial Surgeons (AAOMS) and the Japanese Society of Oral and Maxillofacial Surgeons (JSOMS) now recommend a more conservative treatment strategy. There is no standard surgical protocol of bisphosphonate-related osteonecrosis of the jaws (BRONJ) because of the impossibility to visualize this feature intraoperatively. The aim of this study was to introduce a mechanism providing preoperative labeling of a viable bone using minocycline bone fluorescence technique (MBFT) with VELscope® and to histopathologically investigate.

Methods

This report describes a surgical technique used in six patients with BRONJ who underwent jawbone resection under minocycline bone fluorescence imaging using VELscope®. Subsequently, we investigated and compared the clinical findings using VELscope® and histopathological findings.

Results

Histopathological examinations showed that the non-fluorescent moiety was consistent with the BRONJ lesions.

Conclusions

The surgical treatments that were exactly performed using MBFT with VELscope® offered successful management of BRONJ. This bone fluorescence helped to define the margins of resection, thus improving surgical therapy for extended osteonecrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruggiero SL, Dodson TB, Assael LA, Landesberg R, Marx RE, Mehrotra B (2009) American association of oral and maxillofacial surgeons position paper on bisphosphonate-related osteonecrosis of the jaws—2009 update. J Oral Maxillofac Surg 67:2–12

    Article  PubMed  Google Scholar 

  2. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1115–1117

    Article  PubMed  Google Scholar 

  3. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575

    Article  PubMed  Google Scholar 

  4. Khosla S, Burr D, Cauley J et al (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  5. Advisory task force on bisphosphonate-related osteonecrosis of the jaws, American Association of Oral and Maxillofacial Surgeons (2007) American association of oral and maxillofacial surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg 65:369–376

    Article  Google Scholar 

  6. Koch FP, Yekta SS, Merkel C, Ziebart T, Smeets R (2010) The impact of bisphosphonates on the osteoblast proliferation and collagen gene expression in vitro. Head Face Med 6:12

    Article  PubMed Central  PubMed  Google Scholar 

  7. Otto S, Schreyer C, Hafner S et al (2012) Bisphosphonate-related osteonecrosis of the jaws—characteristics, risk factors, clinical features, localization and impact on oncological treatment. J Craniomaxillofac Surg 40:303–309

    Article  PubMed  Google Scholar 

  8. Yoshiga D, Nakamichi I, Yamashita Y et al (2014) Prognosis factors in the treatment of bisphosphonate-related osteonecrosis of the jaw—prognostic factors in the treatment of BRONJ. J Clin Exp Dent 6:e22–e28

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dimopoulos MA, Kastritis E, Bamia C et al (2009) Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann Oncol 20:117–120

    Article  CAS  PubMed  Google Scholar 

  10. Vahtsevanos K, Kyrgidis A, Verrou E et al (2009) Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol 27:5356–5562

    Article  CAS  PubMed  Google Scholar 

  11. Badros A, Weikel D, Salama A et al (2006) Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol 24:945–952

    Article  CAS  PubMed  Google Scholar 

  12. Bamias A, Kastritis E, Bamia C et al (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23:8580–8587

    Article  PubMed  Google Scholar 

  13. Lee CY, David T, Nishime M (2007) Use of platelet-rich plasma in the management of oral bisphosphonate-associated osteonecrosis of the jaw: a report of 2 cases. J Oral Implantol 33:371–382

    Article  PubMed  Google Scholar 

  14. Scoletta M, Arduino PG, Reggio L, Dalmasso P, Mozzati M (2010) Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: preliminary results of a prospective study. Photomed Laser Surg 28:179–184

    Article  CAS  PubMed  Google Scholar 

  15. Yoshiga D, Yamashita Y, Nakamichi I et al (2013) Weekly teriparatide injections successfully treated advanced bisphosphonate-related osteonecrosis of the jaws. Osteoporos Int 24:2365–2369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lam DK, Sandor GK, Holmes HI, Evans AW, Clokie CM (2007) A review of bisphosphonate-associated osteonecrosis of the jaws and its management. J Can Dent Assoc 73:417–422

    PubMed  Google Scholar 

  17. Carlson ER, Basile JD (2009) The role of surgical resection in the management of bisphosphonate-related osteonecrosis of the jaws. J Oral Maxillofac Surg 67:85–95

    Article  PubMed  Google Scholar 

  18. Tirelli G, Biasotto M, Chiandussi S, Dore F, De Nardi E, Di Lenarda R (2009) Bisphosphonate-associated osteonecrosis of the jaws: the limits of a conservative approach. Head Neck 31:1249–1254

    Article  PubMed  Google Scholar 

  19. Adornato MC, Morcos I, Rozanski J (2007) The treatment of bisphosphonate-associated osteonecrosis of the jaws with bone resection and autologous platelet-derived growth factors. J Am Dent Assoc 138:971–977

    Article  PubMed  Google Scholar 

  20. Harper RP, Fung E (2007) Resolution of bisphosphonate-associated osteonecrosis of the mandible: possible application for intermittent low-dose parathyroid hormone [rhPTH(1–34)]. J Oral Maxillofac Surg 65:573–580

    Article  PubMed  Google Scholar 

  21. Agrillo A, Ungari C, Filiaci F, Priore P, Iannetti G (2007) Ozone therapy in the treatment of avascular bisphosphonate-related jaw osteonecrosis. J Craniofac Surg 18:1071–1075

    Article  PubMed  Google Scholar 

  22. Vescovi P, Merigo E, Meleti M, Manfredi M (2006) Bisphosphonate-associated osteonecrosis (BON) of the jaws: a possible treatment? J Oral Maxillofac Surg 64:1460–1462

    Article  PubMed  Google Scholar 

  23. Patschan D, Loddenkemper K, Buttgereit F (2001) Molecular mechanisms of glucocorticoid-induced osteoporosis. Bone 29:498–505

    Article  CAS  PubMed  Google Scholar 

  24. Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J (2010) Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 362:1005–1013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Allen MR, Burr DB (2009) The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. J Oral Maxillofac Surg 67:61–70

    Article  PubMed  Google Scholar 

  26. Wilde F, Steinhoff K, Frerich B et al (2009) Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107:412–419

    Article  PubMed  Google Scholar 

  27. Muratsu D, Yoshiga D, Taketomi T et al (2013) Zoledronic acid enhances lipopolysaccharide-stimulated proinflammatory reactions through controlled expression of SOCS1 in macrophages. PLoS One 8:e67906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sakaguchi O, Kokuryo S, Tsurushima H, et al. (2014) Lipopolysaccharide aggravates bisphosphonate-induced osteonecrosis in rats. Int J Oral and Maxillofac Surg [in press]

  29. Pautke C, Bauer F, Tischer T et al (2009) Fluorescence-guided bone resection in bisphosphonate-associated osteonecrosis of the jaws. J Oral Maxillofac Surg 67:471–476

    Article  PubMed  Google Scholar 

  30. Fleisher KE, Doty S, Kottal S, Phelan J, Norman RG, Glickman RS (2008) Tetracycline-guided debridement and cone beam computed tomography for the treatment of bisphosphonate-related osteonecrosis of the jaw: a technical note. J Oral Maxillofac Surg 66:2646–2653

    Article  PubMed  Google Scholar 

  31. Fukuzaki Y, Sugawara H, Yamanoha B, Kogure S (2013) 532 nm low-power laser irradiation recovers gamma-secretase inhibitor-mediated cell growth suppression and promotes cell proliferation via Akt signaling. PLoS One 8:e70737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lorenzo SD, Trapassi A, Corradino B, Cordova A (2013) Histology of the oral mucosa in patients with BRONJ at III stage: a microscopic study proves the unsuitability of local mucosal flaps. J Clin Med Res 5:22–25

    PubMed Central  PubMed  Google Scholar 

  33. Bedogni A, Saia G, Bettini G et al (2011) Long-term outcomes of surgical resection of the jaws in cancer patients with bisphosphonate-related osteonecrosis. Oral Oncol 47:420–424

    Article  PubMed  Google Scholar 

  34. Graziani F, Vescovi P, Campisi G et al (2012) Resective surgical approach shows a high performance in the management of advanced cases of bisphosphonate-related osteonecrosis of the jaws: a retrospective survey of 347 cases. J Oral Maxillofac Surg 70:2501–2507

    Article  PubMed  Google Scholar 

  35. Markose G, Mackenzie FR, Currie WJ, Hislop WS (2009) Bisphosphonate osteonecrosis: a protocol for surgical management. Br J Oral Maxillofac Surg 47:294–297

    Article  PubMed  Google Scholar 

  36. Lindsay R, Cosman F, Zhou H et al (2006) A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res 21:366–373

    Article  CAS  PubMed  Google Scholar 

  37. Rauch F, Travers R, Glorieux FH (2006) Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res 21:513–519

    Article  PubMed  Google Scholar 

  38. Harvey BR, Ephros H, Defalco RJ (2004) Tetracycline bone labeling in surgical management of chronic osteomyelitis: a case report. J Oral Maxillofac Surg 62:752–754

    Article  PubMed  Google Scholar 

  39. Dahners LE, Bos GD (2002) Fluorescent tetracycline labeling as an aid to debridement of necrotic bone in the treatment of chronic osteomyelitis. J Orthop Trauma 16:345–346

    Article  PubMed  Google Scholar 

  40. Lindsay R, Zhou H, Cosman F, Nieves J, Dempster D (2013) Double and quadruple tetracycline labeling of bone: impact of the label itself. J Bone Miner Res 28:222–223

    Article  PubMed  Google Scholar 

  41. Farah CS, McIntosh L, Georgiou A, McCullough MJ (2012) Efficacy of tissue autofluorescence imaging (VELScope) in the visualization of oral mucosal lesions. Head Neck 34:856–862

    Article  PubMed  Google Scholar 

  42. Pautke C, Bauer F, Otto S et al (2011) Fluorescence-guided bone resection in bisphosphonate-related osteonecrosis of the jaws: first clinical results of a prospective pilot study. J Oral Maxillofac Surg 69:84–91

    Article  PubMed  Google Scholar 

  43. Pautke C, Bauer F, Bissinger O et al (2010) Tetracycline bone fluorescence: a valuable marker for osteonecrosis characterization and therapy. J Oral Maxillofac Surg 68:125–129

    Article  PubMed  Google Scholar 

  44. Favia G, Pilolli GP, Maiorano E (2009) Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: an analysis of 31 cases with confocal laser scanning microscopy. Bone 45:406–413

    Article  CAS  PubMed  Google Scholar 

  45. Anavi-Lev K, Anavi Y, Chaushu G, Alon DM, Gal G, Kaplan I (2013) Bisphosphonate related osteonecrosis of the jaws: clinico-pathological investigation and histomorphometric analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 115:660–666

    Article  PubMed  Google Scholar 

  46. Cho YA, Yoon HJ, Lee JI, Hong SP, Hong SD (2012) Histopathological features of bisphosphonate-associated osteonecrosis: findings in patients treated with partial mandibulectomies. Oral Surg Oral Med Oral Pathol Oral Radiol 114:785–791

    Article  PubMed  Google Scholar 

  47. Pazianas M (2011) Osteonecrosis of the jaw and the role of macrophages. J Natl Cancer Inst 103:232–240

    Article  PubMed  Google Scholar 

  48. Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E (2004) Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol 16:799–809

    Article  CAS  PubMed  Google Scholar 

  49. Marx RE (1983) Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 41:283–288

    Article  CAS  PubMed  Google Scholar 

  50. Pietschmann P, Stohlawetz P, Brosch S, Steiner G, Smolen JS, Peterlik M (1998) The effect of alendronate on cytokine production, adhesion molecule expression, and transendothelial migration of human peripheral blood mononuclear cells. Calcif Tissue Int 63:325–330

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yoshiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshiga, D., Sasaguri, M., Matsuo, K. et al. Intraoperative detection of viable bone with fluorescence imaging using Visually Enhanced Lesion Scope in patients with bisphosphonate-related osteonecrosis of the jaw: clinical and pathological evaluation. Osteoporos Int 26, 1997–2006 (2015). https://doi.org/10.1007/s00198-015-3096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3096-z

Keywords

Navigation