Skip to main content
Log in

Assessment of bone mineral density and radiographic texture analysis at the tibial subchondral bone

  • Bone Quality Seminars: Subchondral Bone
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Microstructural changes of subchondral bone constitute one of the figures characterising osteoarthritis on a structural level. Subchondral bone mineral density may reflect the complex relationship between bone and cartilage submitted to movement and loading. In this review, the authors discussed the interest of tibial subchondral bone mineral density assessment in the perspective of its diagnostic, etiopathogenic and prognostic value in osteoarthritis. In addition, the sources of variability linked to the measurement of tibial subchondral bone mineral density are precised. Trabecular bone structure characterisation by radiographic texture analyses may also represent a new promising tool to evaluate the microarchitectural changes that occur with initiation and progression of osteoarthritis. In this paper, the authors also highlighted the interest of different radiographic texture analyses and their clinical relevance in the field of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lories R, Luyten F (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49

    Article  PubMed  CAS  Google Scholar 

  2. Sinigaglia L, Varenna M, Casari S (2005) Bone involvement in osteoarthritis. Arthritis Rheum 34:44–46

    Google Scholar 

  3. Muir P, Mc Carthy J, Radtke CL, Markel MD, Santschi EM, Scollay MC, Kalscheur VL (2006) Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Bone 38:342–349

    Article  PubMed  CAS  Google Scholar 

  4. Clarke S, Wakeley C, Sharif M, Elson C (2004) Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol 33:588–595

    Article  PubMed  CAS  Google Scholar 

  5. Dequeker J, Aerszsens J, Luyten F (2003) Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 15:426–439

    PubMed  Google Scholar 

  6. Zhang Y, Hannan M, Chaisson C, McAlindon T, Evans S, Aliabadi P, Levy D, Felson D (2000) Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham study. J Rheumatol 27:1032–1037

    PubMed  CAS  Google Scholar 

  7. Burger H, van Daele P, Odding E, Valkenburg H, Hofman A, Grobbee D, Schütte H, Birkenhäger J, Pols H (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. Arthritis Rheum 39:81–86

    Article  PubMed  CAS  Google Scholar 

  8. Hochberg M, Lethbridge-Cejku M, Tobin J (2004) Bone mineral density and osteoarthritis: data from the Baltimore longitudinal study of aging. Osteoarthr Cartil 12:S45–S48

    Article  PubMed  Google Scholar 

  9. Zhang ZM, Li ZC, Jiang LS, Dai LY (2010) Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoarthritis and osteoporosis. Osteoporos Int 21:1383–1390

    Article  PubMed  Google Scholar 

  10. Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD (2002) The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford study. Arthritis Rheum 46(1):92–99

    Article  PubMed  Google Scholar 

  11. Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, Richy F, Seidel L, Ethgen O, Henrotin Y, Reginster JY (2003) Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone 32:541–545

    Article  PubMed  CAS  Google Scholar 

  12. Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F (1998) Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 25:2187–2194

    PubMed  CAS  Google Scholar 

  13. Bennell K, Creaby M, Wrigley T, Hunter D (2008) Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum 58:2776–2785

    Article  PubMed  Google Scholar 

  14. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright D (2006) Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively. Osteoarthr Cartil 14:1302–1305

    Article  PubMed  CAS  Google Scholar 

  15. Hurwitz D, Sumner D, Andriacchi T, Sugar D (1998) Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech 31:423–430

    Article  PubMed  CAS  Google Scholar 

  16. Lo G, Hunter D, Zhang Y, Mc Lennan C, La Valley M, Kiel D, Mc Lean R, Genant HK, Guermazi A, Felson D (2005) Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum 52:2814–2821

    Article  PubMed  Google Scholar 

  17. Lo GH, Zhang Y, Mc Lennan C, Niu J, Kiel DP, Mc Lean RR, Aliabadi MD, Felson DT, Hunter DJ (2006) The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibio femoral osteoarthritis. Osteoarthr Cartil 14:984–990

    Article  PubMed  CAS  Google Scholar 

  18. Salata M, Gibbs A, Sekiya J (2010) A systematic review of clinical outcomes in patients undergoing meniscectomy. Am J Sports Med 38:1907–1916

    Article  PubMed  Google Scholar 

  19. Lo GH, Niu J, Mc Lennan CE, Kiel DP, Mc Lean R, Guermazi A, Genant HK, Mc Alindon TE, Hunter DJ (2008) Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthr Cartil 16:261–267

    Article  PubMed  CAS  Google Scholar 

  20. Dore D, Ding C, Jones G (2008) A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia. Osteoarthr Cartil 16:1539–1544

    Article  PubMed  CAS  Google Scholar 

  21. Dore D, Quinn S, Changhai D, Winzenberg T, Jones G (2009) Correlates of subchondral BMD: a cross-sectional study. J Bone Miner Res 24:2007–2015

    Article  PubMed  Google Scholar 

  22. Doré D, Quinn S, Ding C, Winzenberg T, Cicuttini F, Jones G (2010) Subchondral bone and cartilage damage. Arthritis Rheum 62:1967–1973

    Article  PubMed  Google Scholar 

  23. Pastoureau PC, Chomel AC, Bonnet J (1999) Evidence of early subchondral bone changes in the meniscectomized guinea pig: a densitometric study using dual-energy X-ray absorptiometry subregional analysis. Osteoarthr Cartil 7:466–473

    Article  PubMed  CAS  Google Scholar 

  24. Beattie K, Boulos P, Duryea J, O’Neill J, Pui M, Gordon C, Webber C, Adachi J (2005) The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of healthy females. Osteoarthr Cartil 13:872–878

    Article  PubMed  CAS  Google Scholar 

  25. Güler-Yüksel M, Bijsterbosch J, Allaart CF, Meulenbelt I, Kroon HM, Watt I, Lems MF, Kloppenburg M (2011) Accelerated metacarpal bone mineral density loss is associated with radiographic progressive hand osteoarthritis. Ann Rheum Dis 70(9):1625–1630

    Google Scholar 

  26. Lespessailles E, Chappard C, Bonnet N, Benhamou CL (2006) Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine 73:254–261

    Article  PubMed  Google Scholar 

  27. Mandelbrot BB (1997) Fractals: form, chance and dimension. Freeman, New York

    Google Scholar 

  28. Mandelbrot BB, Ness JWV (1968) Fractional Brownian motion, fractional noises and applications. SIAM Rev 10:422–438

    Article  Google Scholar 

  29. Pentland AP (1984) Fractal-based description of natural scenes. IEEE-Trans Pattern Anal Mach Intell 6:661–674

    Article  PubMed  CAS  Google Scholar 

  30. Lespessailles E, Gadois E, Kousignian I, Neveu JP, Fardellone P, Kolta S, Roux C, Do-Huu JP, Benhamou CL (2008) Clinical interest of bone texture analysis in osteoporosis: a case control multicenter study. Osteoporos Int 19:1019–1028

    Article  PubMed  CAS  Google Scholar 

  31. Benhamou L, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourlière D, Ohley W (1994) Fractal organization of the trabecular bone images on calcaneus radiographs. J Bone Miner Res 9:1909–1918

    Article  PubMed  CAS  Google Scholar 

  32. Luo G, Kinney JH, Kaufman JJ, Haupt D, Chiabrera A, Siffert RS (1999) Relationship between plain radiographic patterns and three-dimensional trabecular architecture in the human calcaneus. Osteoporos Int 9:339–345

    Article  PubMed  CAS  Google Scholar 

  33. Jennane R, Harba R, Lemineur G, Bretteil S, Estrade A, Benhamou CL (2007) Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection. Med Image Anal 11:91–98

    Article  PubMed  Google Scholar 

  34. Lynch JA, Hawkes DJ, Buckland-Wright (1991) A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. Med Inf 16:241–251

    Article  CAS  Google Scholar 

  35. Messent EA, Buckland-Wright JC, Blake GM (2005) Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int 76:419–425

    Article  PubMed  CAS  Google Scholar 

  36. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright JC (2005) Cancellous bone differences between knee with early, definite and advanced space loss: a comparative quantitative macroradiographic study. Osteoarthr Cartil 13:39–47

    Article  PubMed  Google Scholar 

  37. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright JC (2005) Tibial cancellous bone changes in patients with knee osteoarthritis: a short-term longitudinal study using fractal signature analysis. Osteoarthr Cartil 13:463–470

    Article  PubMed  Google Scholar 

  38. Buckland-Wright C, Messent EA, Papaloucas CD, Cline GA, Beary JF, Meyer J (2004) Tibial cancellous bone changes in OA knee patients grouped into those with slow or detectable joint space narrowing (JSN). Arthritis Rheum 50:S145

    Google Scholar 

  39. Stein ML (2002) Fast and exact simulation of fractional Brownian surfaces. J Comput Graph Stat 11(3):587–599

    Article  Google Scholar 

  40. Byers Kraus V, Feng S, Wang S, White S, Ainslie M, Brett A, Holmes A, Charles H (2009) Trabecular morphometry by fractal signature analysis is a novel of osteoarthritis progression. Arthritis Rheum 60:3711–3722

    Article  Google Scholar 

  41. Wong AKO, Beattie KA, Emond PD, Inglis D, Duryea J, Doan A, Ioannidis G, Webber CE, O’Neill J, de Beer J, Adachi JD, Papaioannou A (2009) Quantitative analysis of subchondral sclerosis of the tibia by bone texture parameters in knee radiographs: site-specific relationships with joint space width. Osteoarthr Cartil 17:1453–1460

    Article  PubMed  CAS  Google Scholar 

  42. Podsiadlo P, Dahl L, Englund M, Lohmander LS (2008) Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods. Osteoarthr Cartil 16:323–329

    Article  PubMed  CAS  Google Scholar 

  43. Wolski M, Podsiadlo P, Stachowiak GW, Lohmander LS, Englund M (2010) Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by directional fractal signature method. Osteoarthr Cartil 18:684–690

    Article  PubMed  CAS  Google Scholar 

  44. Woloszynski T, Podsiadlo P, Stacchowiak GW, Kurzynski M (2010) A signature dissimilarity measure for trabecular bone texture in knee radiographs. Med Phys 37(5):2030–2042

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lespessailles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lespessailles, E., Jennane, R. Assessment of bone mineral density and radiographic texture analysis at the tibial subchondral bone. Osteoporos Int 23 (Suppl 8), 871–876 (2012). https://doi.org/10.1007/s00198-012-2167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2167-7

Keywords

Navigation