Skip to main content
Log in

Efficacy of home-based virtual cycling training on bone mineral density in ambulatory children with cerebral palsy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The 12-week home-based virtual cycling training (hVCT) improved lower limb muscle strength and areal bone mineral density (aBMD) than the control program in children with cerebral palsy (CP). A muscle strengthening program, rather than general physical activity, is more specific in enhancing aBMD for these children. A novel hVCT is an effective and efficient strategy that enhances lower limb bone density in these children.

Introduction

This is the first study to assess the efficacy of a novel hVCT program on bone density for children with spastic CP using a well-designed randomized controlled trial.

Methods

Twenty-seven ambulatory children with spastic CP, aged 6–12 years, were randomly assigned to the hVCT group (n = 13) or control group (n = 14). Outcome measures—motor function [Gross Motor Function Measure-66 (GMFM-66)], muscle strength (curl up scores and isokinetic torque of knee extensor and flexor muscle) and aBMD of the lumbar and distal femur—were administered before and immediately after the 12-week intervention.

Results

Analysis of covariance results show that the hVCT group had greater distal femur aBMD and isokinetic torques of knee extensor and flexor muscles than the control group at posttreatment (p < 0.05). However, curl up scores, GMFM-66, and lumbar aBMD at posttreatment did not differ between the two groups.

Conclusions

Analytical findings suggest that the muscle strengthening program is more specific in enhancing bone density for children with CP than general physical activity. Thus, the proposed 12-week hVCT protocol is an effective and efficient strategy for improving lower limb aBMD in these children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8–14

    PubMed  Google Scholar 

  2. Chen CL, Ke JY, Wang CJ, Wu KP, Wu CY, Wong AM (2011) Factors associated with bone density in different skeletal regions in children with cerebral palsy of various motor severities. Dev Med Child Neurol 53:131–136

    Article  PubMed  Google Scholar 

  3. Henderson RC (1997) Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia. Dev Med Child Neurol 39:224–227

    Article  PubMed  CAS  Google Scholar 

  4. Henderson RC, Kairalla J, Abbas A, Stevenson RD (2004) Predicting low bone density in children and young adults with quadriplegic cerebral palsy. Dev Med Child Neurol 46:416–419

    Article  PubMed  Google Scholar 

  5. Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD (2005) Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr 146:769–775

    Article  PubMed  Google Scholar 

  6. Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD (2002) Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 110:e5

    Article  PubMed  Google Scholar 

  7. Henderson RC, Lin PP, Greene WB (1995) Bone-mineral density in children and adolescents who have spastic cerebral palsy. J Bone Joint Surg Am 77:1671–1681

    PubMed  CAS  Google Scholar 

  8. Jekovec-Vrhovsek M, Kocijancic A, Prezelj J (2005) Quantitative ultrasound of the calcaneus in children and young adults with severe cerebral palsy. Dev Med Child Neurol 47:696–698

    Article  PubMed  Google Scholar 

  9. Chen CL, Ke JY, Lin KC, Wang CJ, Wu CY, Liu WY (2011) Anthropometric and fitness variables associated with bone mineral density and broadband ultrasound attenuation in ambulatory children with cerebral palsy. J Child Neurol 26:552–559

    Article  PubMed  Google Scholar 

  10. Chen CL, Lin KC, Wu CY, Ke JY, Wang CJ, Chen CY (2012) Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy. Osteoporos Int 23:715–721

    Article  PubMed  CAS  Google Scholar 

  11. Lee JJ, Lyne ED (1990) Pathologic fractures in severely handicapped children and young adults. J Pediatr Orthop 10:497–500

    PubMed  CAS  Google Scholar 

  12. Ward KA, Caulton JM, Adams JE, Mughal MZ (2006) Perspective: cerebral palsy as a model of bone development in the absence of postnatal mechanical factors. J Musculoskelet Neuronal Interact 6:154–159

    PubMed  CAS  Google Scholar 

  13. Schoenau E, Fricke O (2008) Mechanical influences on bone development in children. Eur J Endocrinol 159 Suppl 1:S27–S31

    Article  PubMed  CAS  Google Scholar 

  14. Binkley TL, Specker BL (2008) Muscle–bone relationships in the lower leg of healthy pre-pubertal females and males. J Musculoskelet Neuronal Interact 8:239–243

    PubMed  CAS  Google Scholar 

  15. Chan DC, Lee WT, Lo DH, Leung JC, Kwok AW, Leung PC (2008) Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteoporos Int 19:1485–1495

    Article  PubMed  CAS  Google Scholar 

  16. Schonau E (1998) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31

    Article  PubMed  CAS  Google Scholar 

  17. Daly RM, Stenevi-Lundgren S, Linden C, Karlsson MK (2008) Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med Sci Sports Exerc 40:1135–1141

    Article  PubMed  Google Scholar 

  18. Schoenau E (2005) From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact 5:232–238

    PubMed  CAS  Google Scholar 

  19. Wilmshurst S, Ward K, Adams JE, Langton CM, Mughal MZ (1996) Mobility status and bone density in cerebral palsy. Arch Dis Child 75:164–165

    Article  PubMed  CAS  Google Scholar 

  20. Kaljumae U, Hanninen O, Airaksinen O (1994) Knee extensor fatigability and strength after bicycle ergometer training. Arch Phys Med Rehabil 75:564–567

    PubMed  CAS  Google Scholar 

  21. Snider L, Majnemer A, Darsaklis V (2010) Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil 13:120–128

    Article  PubMed  Google Scholar 

  22. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39:214–223

    Article  PubMed  CAS  Google Scholar 

  23. Scholtes VA, Dallmeijer AJ, Rameckers EA, Verschuren O, Tempelaars E, Hensen M, Becher JG (2008) Lower limb strength training in children with cerebral palsy—a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles. BMC Pediatr 8:41

    Article  PubMed  Google Scholar 

  24. Russell DJ, Rosenbaum PL, Avery L, Lane M (2002) Gross Motor Function Measure (GMFM-66 and GMFM-88): User’s Manual. MacKeith Press, London

    Google Scholar 

  25. Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA (2008) Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging 28:113–119

    Article  PubMed  Google Scholar 

  26. Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC (1998) Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol 28:241–246

    Article  PubMed  CAS  Google Scholar 

  27. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  28. Wang HY, Yang YH (2006) Evaluating the responsiveness of 2 versions of the gross motor function measure for children with cerebral palsy. Arch Phys Med Rehabil 87:51–56

    Article  PubMed  CAS  Google Scholar 

  29. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19:360–369

    Article  PubMed  Google Scholar 

  30. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    Article  PubMed  CAS  Google Scholar 

  31. Lenchik L, Kiebzak GM, Blunt BA (2002) What is the role of serial bone mineral density measurements in patient management? J Clin Densitom 5 Suppl:S29–S38

    Article  PubMed  Google Scholar 

  32. Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW Jr, Lentle BC (2005) Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom 8:371–378

    Article  PubMed  Google Scholar 

  33. El Maghraoui A, Do Santos Zounon AA, Jroundi I, Nouijai A, Ghazi M, Achemlal L, Bezza A, Tazi MA, Abouqual R (2005) Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos Int 16:1742–1748

    Article  PubMed  CAS  Google Scholar 

  34. Chad KE, Bailey DA, McKay HA, Zello GA, Snyder RE (1999) The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. J Pediatr 135:115–117

    Article  PubMed  CAS  Google Scholar 

  35. Fowler EG, Knutson LM, Demuth SK, Siebert KL, Simms VD, Sugi MH, Souza RB, Karim R, Azen SP (2010) Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial. Phys Ther 90:367–381

    Article  PubMed  Google Scholar 

  36. Macdonald HM, Kontulainen SA, Khan KM, McKay HA (2007) Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res 22:434–446

    Article  PubMed  Google Scholar 

  37. McWhannell N, Henaghan JL, Foweather L, Doran DA, Batterham AM, Reilly T, Stratton G (2008) The effect of a 9-week physical activity programme on bone and body composition of children aged 10–11 years: an exploratory trial. Int J Sports Med 29:941–947

    Article  PubMed  CAS  Google Scholar 

  38. Reid D (2004) The influence of virtual reality on playfulness in children with cerebral palsy: a pilot study. Occup Ther Int 11:131–144

    Article  PubMed  Google Scholar 

  39. You SH, Jang SH, Kim YH, Kwon YH, Barrow I, Hallett M (2005) Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol 47:628–635

    PubMed  Google Scholar 

  40. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT (2010) The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res 25:520–526

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council, Taiwan, for financially supporting this research under contract nos. NSC 93-2314-B-182A-201 and 96-2314-B-182A-044-MY2. Ted Knoy is appreciated for his editorial assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-H. Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CL., Chen, CY., Liaw, MY. et al. Efficacy of home-based virtual cycling training on bone mineral density in ambulatory children with cerebral palsy. Osteoporos Int 24, 1399–1406 (2013). https://doi.org/10.1007/s00198-012-2137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2137-0

Keywords

Navigation