Skip to main content
Log in

Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Regulation of nitric oxide (NO) production is considered essential in mechanical load-related osteogenesis. We examined whether osteoblast endothelial NO synthase (eNOS)-derived NO production was regulated by HSP90. We found that HSP90 is essential for strain-related NO release but appears to be independent of eNOS in cultured osteoblasts.

Introduction

NO is a key regulator of bone mass, and its production by bone cells is regarded as essential in mechanical strain-related osteogenesis. We sought to identify whether bone cell NO production relied upon eNOS, considered to be the predominant NOS isoform in bone, and whether this was regulated by an HSP90-dependent mechanism.

Methods

Using primary rat long bone-derived osteoblasts, the ROS 17/2.8 cell line and primary mouse osteoblasts, derived from wild-type and eNOS-deficient (eNOS−/−) mice, we examined by immunoblotting the expression of eNOS using a range of well-characterised antibodies and extraction methods, measured NOS activity by monitoring the conversion of radiolabelled l-arginine to citrulline and examined the production of NO by bone cells subjected to mechanical strain application under various conditions.

Results

Our studies have revealed that eNOS protein and activity were both undetectable in osteoblast-like cells, that mechanical strain-induced NO production was retained in bone cells from eNOS-deficient mice, but that this strain-related induction of NO production was, however, dependent upon HSP90.

Conclusions

Together, our studies indicate that HSP90 activity is essential for strain-related NO release by cultured osteoblasts and that this is highly likely to be achieved by an eNOS-independent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107:321–327

    Article  CAS  PubMed  Google Scholar 

  2. Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 270:E634–E639

    CAS  PubMed  Google Scholar 

  3. Fox SW, Chambers TJ, Chow JW (1996) Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am J Physiol 270:E955–E960

    CAS  PubMed  Google Scholar 

  4. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131

    Article  CAS  PubMed  Google Scholar 

  5. Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9:1614–1622

    CAS  PubMed  Google Scholar 

  6. van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103:255–261

    Article  Google Scholar 

  7. Loveridge N, Fletcher S, Power J, Caballero-Alias AM, Das-Gupta V, Rushton N, Parker M, Reeve J, Pitsillides AA (2002) Patterns of osteocytic endothelial nitric oxide synthase expression in the femoral neck cortex: differences between cases of intracapsular hip fracture and controls. Bone 30:866–871

    Article  CAS  PubMed  Google Scholar 

  8. Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, Lynch KR, Peach MJ (1992) Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267:15274–15276

    CAS  PubMed  Google Scholar 

  9. Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628

    Article  CAS  PubMed  Google Scholar 

  10. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano P, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289

    Article  CAS  PubMed  Google Scholar 

  11. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601

    Article  CAS  PubMed  Google Scholar 

  12. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392:821–824

    Article  CAS  PubMed  Google Scholar 

  14. Tang Y, Scheef EA, Gurel Z, Sorenson CM, Jefcoate CR, Sheibani N (2010) CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress. Am J Physiol Cell Physiol 298:C665–C678

    Article  CAS  PubMed  Google Scholar 

  15. Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384

    Article  CAS  PubMed  Google Scholar 

  16. Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276:14249–14256

    CAS  PubMed  Google Scholar 

  17. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  CAS  PubMed  Google Scholar 

  18. MacIntyre I, Zaidi M, Alam AS, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JR (1991) Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci U S A 88:2936–2940

    Article  CAS  PubMed  Google Scholar 

  19. Pitsillides AA, Das-Gupta V, Simon D, Rawlinson SC (2003) Methods for analyzing bone cell responses to mechanical loading using in vitro monolayer and organ culture models. Methods Mol Med 80:399–422

    PubMed  Google Scholar 

  20. Piper PW (2001) The Hsp90 chaperone as a promising drug target. Curr Opin Investig Drugs 2:1606–1610

    CAS  PubMed  Google Scholar 

  21. Dodds RA, Ali N, Pead MJ, Lanyon LE (1993) Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res 8:261–267

    Article  CAS  PubMed  Google Scholar 

  22. Fairchild TA, Fulton D, Fontana JT, Gratton JP, McCabe TJ, Sessa WC (2001) Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)–>Asp variant of human endothelial nitric-oxide synthase. J Biol Chem 276:26674–26679

    Article  CAS  PubMed  Google Scholar 

  23. Solomon KR, Danciu TE, Adolphson LD, Hecht LE, Hauschka PV (2000) Caveolin-enriched membrane signaling complexes in human and murine osteoblasts. J Bone Miner Res 15:2380–2390

    Article  CAS  PubMed  Google Scholar 

  24. Knowles RG, Salter M (1998) Measurement of NOS activity by conversion of radiolabeled arginine to citrulline using ion-exchange separation. Methods Mol Biol 100:67–73

    CAS  PubMed  Google Scholar 

  25. Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V, MacIntyre I (2000) The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun 274:477–481

    Article  CAS  PubMed  Google Scholar 

  26. Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  CAS  PubMed  Google Scholar 

  28. Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997) Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272:25907–25912

    Article  CAS  PubMed  Google Scholar 

  29. Hukkanen MV, Platts LA, Fernandez De Marticorena I, O’Shaughnessy M, MacIntyre I, Polak JM (1999) Developmental regulation of nitric oxide synthase expression in rat skeletal bone. J Bone Miner Res 14:868–877

    Article  CAS  PubMed  Google Scholar 

  30. Corbett SA, Hukkanen M, Batten J, McCarthy ID, Polak JM, Hughes SP (1999) Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J Bone Joint Surg Br 81:531–537

    Article  CAS  PubMed  Google Scholar 

  31. MacPherson H, Noble BS, Ralston SH (1999) Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells. Bone 24:179–185

    Article  CAS  PubMed  Google Scholar 

  32. Grabowski PS, Macpherson H, Ralston SH (1996) Nitric oxide production in cells derived from the human joint. Br J Rheumatol 35:207–212

    Article  CAS  PubMed  Google Scholar 

  33. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2009) Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab 296:E139–E146

    Article  CAS  PubMed  Google Scholar 

  34. Hukkanen M, Hughes FJ, Buttery LD, Gross SS, Evans TJ, Seddon S, Riveros-Moreno V, Macintyre I, Polak JM (1995) Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology 136:5445–5453

    Article  CAS  PubMed  Google Scholar 

  35. O’Shaughnessy MC, Polak JM, Afzal F, Hukkanen MV, Huang P, MacIntyre I, Buttery LD (2000) Nitric oxide mediates 17beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun 277:604–610

    Article  PubMed  Google Scholar 

  36. Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH (1997) Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 12:1108–1115

    Article  CAS  PubMed  Google Scholar 

  37. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419

    Article  CAS  PubMed  Google Scholar 

  38. Rawlinson SC, McKay IJ, Ghuman M, Wellmann C, Ryan P, Prajaneh S, Zaman G, Hughes FJ, Kingsmill VJ (2009) Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS One 4:e8358

    Article  PubMed  Google Scholar 

  39. McAllister TN, Frangos JA (1999) Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res 14:930–936

    Article  CAS  PubMed  Google Scholar 

  40. Miyamoto T, Petrus MJ, Dubin AE, Patapoutian A (2011) TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2:369

    Article  PubMed  Google Scholar 

  41. Godber BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R (2000) Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275:7757–7763

    Article  CAS  PubMed  Google Scholar 

  42. Meyer DJ (1995) Enzymatic/non-enzymatic formation of nitric oxide. Nat Med 1:1103–1104

    CAS  PubMed  Google Scholar 

  43. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    CAS  PubMed  Google Scholar 

  44. Skerry TM, Bitensky L, Chayen J, Lanyon LE (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788

    Article  CAS  PubMed  Google Scholar 

  45. Rawlinson SC, Murray DH, Mosley JR, Wright CD, Bredl JC, Saxon LK, Loveridge N, Leterrier C, Constantin P, Farquharson C, Pitsillides AA (2009) Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading. Bone 45:357–366

    Article  PubMed  Google Scholar 

  46. Yoshida A (1966) Glucose 6-phosphate dehydrogenase of human erythrocytes. I. Purification and characterization of normal (B+) enzyme. J Biol Chem 241:4966–4976

    CAS  PubMed  Google Scholar 

  47. Kunnel JG, Igarashi K, Gilbert JL, Stern PH (2004) Bone anabolic responses to mechanical load in vitro involve COX-2 and constitutive NOS. Connect Tissue Res 45:40–49

    Article  CAS  PubMed  Google Scholar 

  48. Bergula AP, Haidekker MA, Huang W, Stevens HY, Frangos JA (2004) Venous ligation-mediated bone adaptation is NOS 3 dependent. Bone 34:562–569

    Article  CAS  PubMed  Google Scholar 

  49. Klein-Nulend J, Helfrich MH, Sterck JG, MacPherson H, Joldersma M, Ralston SH, Semeins CM, Burger EH (1998) Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 250:108–114

    Article  CAS  PubMed  Google Scholar 

  50. Stravopodis DJ, Margaritis LH, Voutsinas GE (2007) Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex. Curr Med Chem 14:3122–3138

    Article  CAS  PubMed  Google Scholar 

  51. Compton SA, Elmore LW, Haydu K, Jackson-Cook CK, Holt SE (2006) Induction of nitric oxide synthase-dependent telomere shortening after functional inhibition of Hsp90 in human tumor cells. Mol Cell Biol 26:1452–1462

    Article  CAS  PubMed  Google Scholar 

  52. Miao RQ, Fontana J, Fulton D, Lin MI, Harrison KD, Sessa WC (2008) Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol 28:105–111

    Article  CAS  PubMed  Google Scholar 

  53. van’t Hof RJ, Macphee J, Libouban H, Helfrich MH, Ralston SH (2004) Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 145:5068–5074

    Article  Google Scholar 

  54. Sabanai K, Tsutsui M, Sakai A, Hirasawa H, Tanaka S, Nakamura E, Tanimoto A, Sasaguri Y, Ito M, Shimokawa H, Nakamura T, Yanagihara N (2008) Genetic disruption of all NO synthase isoforms enhances BMD and bone turnover in mice in vivo: involvement of the renin-angiotensin system. J Bone Miner Res 23:633–643

    Article  CAS  PubMed  Google Scholar 

  55. Aguirre J, Buttery L, O’Shaughnessy M, Afzal F, Fernandez de Marticorena I, Hukkanen M, Huang P, MacIntyre I, Polak J (2001) Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am J Pathol 158:247–257

    Article  CAS  PubMed  Google Scholar 

  56. Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107

    Article  CAS  PubMed  Google Scholar 

  57. Caballero-Alias AM, Loveridge N, Lyon A, Das-Gupta V, Pitsillides A, Reeve J (2004) NOS isoforms in adult human osteocytes: multiple pathways of NO regulation? Calcif Tissue Int 75:78–84

    Article  CAS  PubMed  Google Scholar 

  58. Cho K, Demissie S, Dupuis J, Cupples LA, Kathiresan S, Beck TJ, Karasik D, Kiel DP (2008) Polymorphisms in the endothelial nitric oxide synthase gene and bone density/ultrasound and geometry in humans. Bone 42:53–60

    Article  CAS  PubMed  Google Scholar 

  59. Riancho JA, Zarrabeitia MT, Fernandez-Luna JL, Gonzalez-Macias J (1995) Mechanisms controlling nitric oxide synthesis in osteoblasts. Mol Cell Endocrinol 107:87–92

    Article  CAS  PubMed  Google Scholar 

  60. Riancho JA, Salas E, Zarrabeitia MT, Olmos JM, Amado JA, Fernandez-Luna JL, Gonzalez-Macias J (1995) Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res 10:439–446

    Article  CAS  PubMed  Google Scholar 

  61. Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17:1015–1025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to The Biotechnology and Biological Sciences Research Council and GlaxoSmithKline for supporting this work and to Rosemary Suswillo for her help in teaching us how to prepare primary long bone-derived osteoblasts from both rat and mouse bones.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pitsillides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das-Gupta, V., Williamson, R.A. & Pitsillides, A.A. Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts. Osteoporos Int 23, 2635–2647 (2012). https://doi.org/10.1007/s00198-012-1957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-1957-2

Keywords

Navigation