Skip to main content

Advertisement

Log in

Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

To determine whether undercarboxylated osteocalcin (UC-OC) or gamma-carboxyglutamic-carboxylated-type osteocalcin (GLA-OC) concentrations deviate from normal in type 1 diabetes (T1D), serum levels were compared between 115 subjects with T1D and 55 age-matched healthy controls. UC-OC and GLA-OC concentrations were similar between groups; however, in T1D, UC-OC correlated positively with markers of insulin exposure, either endogenously produced or exogenously administered.

Introduction

A study was conducted to determine whether dysregulation of circulating concentrations of UC-OC or GLA-OC occurs in patients with type 1 diabetes, a condition of insulin deficiency without insulin resistance.

Methods

We measured serum concentrations of UC-OC and GLA-OC in 115 subjects with T1D, ages 14–40 years, and in 55 age-matched healthy control subjects. Relationships between UC-OC and GLA-OC concentrations and patient characteristics (gender and age), indices of glycemic control (hemoglobin A1c (HbA1c), fasting plasma glucose, C-peptide concentration, 3-day average glucose measured by a continuous glucose sensor, total daily insulin dose) and circulating indices of skeletal homeostasis (total calcium, 25-OH vitamin D, parathyroid hormone, insulin-like growth factor 1 (IGF-1), type 1 collagen degradation fragments (CTX), adiponectin, leptin) were examined. Between group differences in the concentrations of UC-OC and GLA-OC were the main outcome measures.

Results

Although adiponectin levels were higher in the T1D group, between-group comparisons did not reveal statistically significant differences in concentration of UC-OC, GLA-OC, CTX or leptin between the T1D and control populations. Instead, by multivariate regression modeling, UC-OC was correlated with younger age (p < 0.001), higher CTX (p < 0.001), lower HbA1c (p = 0.013), and higher IGF-1 (p = 0.086). Moreover, within the T1D subgroup, UC-OC was positively correlated with C-peptide/glucose ratio (reflecting endogenous insulin secretion), with IGF-1 (reflecting intra-portal insulin sufficiency), and with total daily insulin dose.

Conclusions

In T1D, UC-OC appears to correlate positively with markers of insulin exposure, either endogenously produced or exogenously administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Craig ME, Hattersley A, Donaghue K (2006) ISPAD Clinical Practice Consensus Guidelines 2006–2007. Definition, epidemiology and classification. Pediatr Diabetes 7:343–351

    Article  PubMed  Google Scholar 

  2. Thrailkill KM (2000) Insulin-like growth factor-I in diabetes mellitus: its physiology, metabolic effects, and potential clinical utility. Diabetes Technol Ther 2:69–80

    Article  PubMed  CAS  Google Scholar 

  3. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745

    Article  PubMed  CAS  Google Scholar 

  4. Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, Wahl EC, Bunn RC, Lumpkin CK Jr, Fowlkes JL, Thrailkill KM (2011) Increasing duration of type 1 diabetes perturbs the strength–structure relationship and increases brittleness of bone. Bone 48:733–740

    Article  PubMed  Google Scholar 

  5. Thrailkill KM, Jo CH, Cockrell GE, Moreau CS, Fowlkes JL (2011) Enhanced excretion of vitamin D binding protein in type 1 diabetes: a role in vitamin D deficiency? J Clin Endocrinol Metab 96:142–149

    Article  PubMed  CAS  Google Scholar 

  6. Hauschka PV, Lian JB, Cole DE, Gundberg CM (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047

    PubMed  CAS  Google Scholar 

  7. Lian JB, Gundberg CM (1988) Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res (226):267–291

  8. Motyl KJ, McCabe LR, Schwartz AV (2010) Bone and glucose metabolism: a two-way street. Arch Biochem Biophys 503:2–10

    Article  PubMed  CAS  Google Scholar 

  9. Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19:1683–1704

    Article  PubMed  CAS  Google Scholar 

  10. Heuck C, Skjaerbaek C, Wolthers OD (1998) Diurnal rhythm of serum osteocalcin in normal children. Acta Paediatr 87:930–932

    Article  PubMed  CAS  Google Scholar 

  11. Sokoll LJ, Booth SL, Davidson KW, Dallal GE, Sadowski JA (1998) Diurnal variation in total and undercarboxylated osteocalcin: influence of increased dietary phylloquinone. Calcif Tissue Int 62:447–452

    Article  PubMed  CAS  Google Scholar 

  12. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    Article  PubMed  CAS  Google Scholar 

  13. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

  14. Hwang YC, Jeong IK, Ahn KJ, Chung HY (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced beta-cell function in middle-aged male subjects. Diabetes Metab Res Rev 25:768–772

    Article  PubMed  CAS  Google Scholar 

  15. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, Sugimoto T (2011) Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 22:187–194

    Article  PubMed  CAS  Google Scholar 

  16. Thrailkill KM, Bunn RC, Moreau CS, Cockrell GE, Simpson PM, Coleman HN, Frindik JP, Kemp SF, Fowlkes JL (2007) Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 30:2321–2326

    Article  PubMed  CAS  Google Scholar 

  17. Iki M, Tamaki J, Fujita Y, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Tomioka K, Okamoto N, Kurumatani N (2011) Serum undercarboxylated osteocalcin levels are inversely associated with glycemic status and insulin resistance in an elderly Japanese male population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos Int (in press)

  18. Maggio AB, Ferrari S, Kraenzlin M, Marchand LM, Schwitzgebel V, Beghetti M, Rizzoli R, Farpour-Lambert NJ (2010) Decreased bone turnover in children and adolescents with well controlled type 1 diabetes. J Pediatr Endocrinol Metab 23:697–707

    Article  PubMed  CAS  Google Scholar 

  19. Pater A, Sypniewska G, Pilecki O (2010) Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 23:81–86

    Article  PubMed  CAS  Google Scholar 

  20. Nimptsch K, Hailer S, Rohrmann S, Gedrich K, Wolfram G, Linseisen J (2007) Determinants and correlates of serum undercarboxylated osteocalcin. Ann Nutr Metab 51:563–570

    Article  PubMed  CAS  Google Scholar 

  21. Thrailkill KM, Fowlkes JL, Hyde JF, Litton JC (2001) The effects of co- therapy with recombinant human insulin-like growth factor I and insulin on serum leptin levels in adolescents with type 1 diabetes mellitus. Pediatr Diabetes 2:25–29

    PubMed  CAS  Google Scholar 

  22. Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa H, Sayama K, Uno S, Iwahashi H, Yamagata K, Miyagawa J, Matsuzawa Y (2002) Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care 25:1665–1666

    Article  PubMed  Google Scholar 

  23. Considine RV (2001) Regulation of leptin production. Rev Endocr Metab Disord 2:357–363

    Article  PubMed  CAS  Google Scholar 

  24. Brophy S, Davies H, Stephens JW, Prior SL, Atkinson M, Bain S, Williams R (2010) Adiponectin levels in people with latent autoimmune diabetes—a case control study. BMC Res Notes 3:317

    Article  PubMed  Google Scholar 

  25. Morales A, Wasserfall C, Brusko T, Carter C, Schatz D, Silverstein J, Ellis T, Atkinson M (2004) Adiponectin and leptin concentrations may aid in discriminating disease forms in children and adolescents with type 1 and type 2 diabetes. Diabetes Care 27:2010–2014

    Article  PubMed  CAS  Google Scholar 

  26. Maahs DM, Hamman RF, D’Agostino R Jr, Dolan LM, Imperatore G, Lawrence JM, Marcovina SM, Mayer-Davis EJ, Pihoker C, Dabelea D (2009) The association between adiponectin/leptin ratio and diabetes type: the SEARCH for Diabetes in Youth Study. J Pediatr 155:133–135, 135 e131

    Article  PubMed  Google Scholar 

  27. Leth H, Andersen KK, Frystyk J, Tarnow L, Rossing P, Parving HH, Flyvbjerg A (2008) Elevated levels of high-molecular-weight adiponectin in type 1 diabetes. J Clin Endocrinol Metab 93:3186–3191

    Article  PubMed  CAS  Google Scholar 

  28. Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161–166

    Article  PubMed  CAS  Google Scholar 

  29. Prats-Puig A, Mas-Parareda M, Riera-Perez E, Gonzalez-Forcadell D, Mier C, Mallol-Guisset M, Diaz M, Bassols J, de Zegher F, Ibanez L, Lopez-Bermejo A (2010) Carboxylation of osteocalcin affects its association with metabolic parameters in healthy children. Diabetes Care 33:661–663

    Article  PubMed  CAS  Google Scholar 

  30. Yang S, Xu H, Yu S, Cao H, Fan J, Ge C, Fransceschi RT, Dong HH, Xiao G (2011) Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 286:19149–19158

    Article  PubMed  CAS  Google Scholar 

  31. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  PubMed  CAS  Google Scholar 

  32. Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680

    Article  PubMed  CAS  Google Scholar 

  33. Alexopoulou O, Jamart J, Devogelaer JP, Brichard S, de Nayer P, Buysschaert M (2006) Bone density and markers of bone remodeling in type 1 male diabetic patients. Diabetes Metab 32:453–458

    Article  PubMed  CAS  Google Scholar 

  34. Liese AD, D’Agostino RB Jr, Hamman RF, Kilgo PD, Lawrence JM, Liu LL, Loots B, Linder B, Marcovina S, Rodriguez B, Standiford D, Williams DE (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118:1510–1518

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to KMT (R01-DK62999); to the UAMS General Clinical Research Center (M01 RR14288) and to the Arkansas Children’s Hospital Research Institute (C06RR16517). Additional funding was provided by the Minnie Merrill Sturgis Diabetes Research Fund and the Arkansas Biosciences Institute. The authors are also grateful to the study subjects and their families for participation in this research.

Conflicts of interest

None.

Funding sources

Grants from the National Institutes of Health to KMT (R01-DK62999), to the UAMS General Clinical Research Center (M01 RR14288) and to the Arkansas Children’s Hospital Research Institute (C06RR16517), as well as funds from the Minnie Merrill Sturgis Diabetes Research Fund and the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Thrailkill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thrailkill, K.M., Jo, CH., Cockrell, G.E. et al. Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes. Osteoporos Int 23, 1799–1806 (2012). https://doi.org/10.1007/s00198-011-1807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1807-7

Keywords

Navigation