Skip to main content

Advertisement

Log in

Patients with cirrhosis and ascites have false values of bone density

Implications for the diagnosis of osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The effect of ascites on bone densitometry has been assessed in 25 patients with advanced cirrhosis, and it was concluded that ascites over 4 l causes inaccuracy of BMD measurements, particularly at the lumbar spine. This fact must be considered when assessing bone mass in patients with decompensated cirrhosis.

Introduction

Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry (DXA) is the best procedure for assessment of osteoporosis and fracture risk, but BMD values at the central skeleton may be influenced by changes in soft tissues. Therefore, we have studied the effect of ascites on BMD.

Methods

BMD was measured by DXA at the lumbar spine, femoral neck and total hip, just before and shortly after therapeutic paracentesis in 25 patients with advanced liver cirrhosis. Changes in BMD, lean and fat mass, abdominal diameter and weight, as well as the amount of removed ascites were measured.

Results

The amount of drained ascites was 6.6 ± 0.5 l (range: 3.0 to 12.7 l). After paracentesis, BMD increased at the lumbar spine (from 0.944 ± 0.035 to 0.997 ± 0.038 g/cm2, p < 0.001) and at the total hip (from 0.913 ± 0.036 to 0.926 ± 0.036 g/cm2, p < 0.01). Patients with a volume of drained ascites higher than 4 l showed a significant increase in lumbar BMD (7.0%), compared with patients with a lower amount (1.5%) (p < 0.03). The decrease in total soft tissue mass correlated with the amount of removed ascites (r = 0.951, p < 0.001). Diagnosis of osteoporosis or osteopenia changed after paracentesis in 12% of patients.

Conclusion

Ascites over 4 l causes inaccuracy of BMD measurements, particularly at the lumbar spine. This fact must be considered when assessing bone mass in patients with advanced cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

DXA:

Dual-energy x-ray absorptiometry

LSC:

Least significant change

References

  1. Guañabens N, Pares A (2010) Liver and bone. Arch Biochem Biophys 503:84–94

    Article  PubMed  Google Scholar 

  2. Monegal A, Navasa M, Guañabens N, Peris P, Pons F, Martinez de Osaba MJ et al (1997) Osteoporosis and bone mineral metabolism disorders in cirrhotic patients referred for orthotopic liver transplantation. Calcif Tissue Int 60:148–154

    Article  CAS  PubMed  Google Scholar 

  3. Cohen A, Sambrook P, Shane E (2004) Management of bone loss after organ transplantation. J Bone Miner Res 19:1919–1932

    Article  PubMed  Google Scholar 

  4. Monegal A, Navasa M, Guañabens N, Peris P, Pons F, Martinez de Osaba MJ et al (2001) Bone disease after liver transplantation: a long-term prospective study of bone mass changes, hormonal status and histomorphometric characteristics. Osteoporos Int 12:484–492

    Article  CAS  PubMed  Google Scholar 

  5. Leidig-Bruckner G, Hosch S, Dodidou P, Ritschel D, Conradt C, Klose C et al (2001) Frequency and predictors of osteoporotic fractures after cardiac and liver transplantation: a follow-up study. Lancet 357:342–347

    Article  CAS  PubMed  Google Scholar 

  6. Adams J, Bishop N (2008) DXA in adults and children. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism,7th ed. Washington DC, pp. 152–158

  7. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41:138–54

    Article  CAS  PubMed  Google Scholar 

  8. Tothill P, Hannan WJ, Cowen S, Freeman CP (1997) Anomalies in the measurement of changes in total body bone mineral by dual-energy x-ray absorptiometry during weight change. J Bone Miner Res 12:1908–1921

    Article  CAS  PubMed  Google Scholar 

  9. Tothill P, Avenell A (1994) Errors in dual-energy x-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol 67:71–75

    Article  CAS  PubMed  Google Scholar 

  10. Jensen LB, Quaade F, Sorensen OH (1994) Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res 9:459–463

    Article  CAS  PubMed  Google Scholar 

  11. Woodrow G, Oldroyd B, Turney JH, Smith MA (1996) Influence of changes in peritoneal fluid on body-composition measurements by dual-energy x-ray absorptiometry in patients receiving continuous ambulatory peritoneal dialysis. Am J Clin Nutr 64:237–241

    CAS  PubMed  Google Scholar 

  12. Labio ED, Del Rosario DB, Strasser SI, McCaughan GW, Crawford BA (2007) Effect of ascites on bone density measurements in cirrhosis. J Clin Densitom 10:391–394

    Article  PubMed  Google Scholar 

  13. Haderslev KV, Svendsen OL, Staun M (1999) Does paracentesis of ascites influence measurements of bone mineral or body composition by dual-energy x-ray absorptiometry? Metabolism 48:373–377

    Article  CAS  PubMed  Google Scholar 

  14. World Health Organization Study Group: assessment of fracture risk and its application to screening for postmenopausal osteoporosis (1994) WHO technical report series 843. Geneva: WHO 2–25

  15. Hannon R, Blumsohn A, Naylor K, Eastell R (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133

    Article  CAS  PubMed  Google Scholar 

  16. Ninkovic M, Love SA, Tom B, Alexander GJM, Compston JE (2001) High prevalence of osteoporosis in patients with chronic liver disease prior to liver transplantation. Calcif Tissue Int 69:321–326

    Article  CAS  PubMed  Google Scholar 

  17. American Gastroenterological Association Medical Position Statement: Osteoporosis in hepatic disorders (2003) Gastroenterology 125:937–940

  18. Ninkovic M, Love SA, Tom BD, Bearcroft PW, Alexander GJ, Compston JE (2002) Lack of effect of intravenous pamidronate on fracture incidence and bone mineral density after orthotropic liver transplantation. J Hepatol 37:93–100

    Article  CAS  PubMed  Google Scholar 

  19. Crawford BAL, Kam CK, Pavlovic J, Byth K, Handelsman DJ, Angus PW et al (2006) Zoledronic acid prevents bone loss after liver transplantation. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:239–248

    CAS  PubMed  Google Scholar 

  20. Monegal A, Guañabens N, Suárez MJ, Suárez F, Clemente G, García-González M et al (2009) Pamidronate in the prevention of bone loss after liver transplantation: a randomized controlled trial. Transplant Int 22:198–206

    Article  CAS  Google Scholar 

  21. Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH et al (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443

    Article  CAS  PubMed  Google Scholar 

  22. Miller PD, McClung MR, Macovei L, Stakkestad JA, Luckey M, Bonvoisin B et al (2005) Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-year results from the MOBILE study. J Bone Miner Res 20:1315–1322

    Article  CAS  PubMed  Google Scholar 

  23. Reid IR, Brown JP, Burckhardt P, Horowitz Z, Richardson P, Trechsel U et al (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346:653–661

    Article  CAS  PubMed  Google Scholar 

  24. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  CAS  PubMed  Google Scholar 

  25. Eastell R, Dickson ER, Hodgson SF, Wiesner RH, Porayko MK, Wahner HW et al (1991) Rates of vertebral bone loss before and after liver transplantation in women with primary biliary cirrhosis. Hepatology 14:296–300

    Article  CAS  PubMed  Google Scholar 

  26. Pietrobelli A, Wang Z, Formica C, Heymsfield SB (1998) Dual-energy x-ray absorptiometry. Fat estimation errors due to variation in soft tissue hydration. Am J Physiol Endocrinol Metab 274:808–816

    Google Scholar 

  27. Peng S, Plank LD, McCall JL, Gillanders LK, Mcllroy K, Gane EJ (2007) Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr 85:1257–1266

    CAS  PubMed  Google Scholar 

  28. Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J et al (2009) Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg 19:860–866

    Article  PubMed  Google Scholar 

  29. Levitt DG, Beckman LM, Mager JR, Valentine B, Sibley SD, Beckman TR et al (2010) Comparison of DXA and water measurements of body fat following gastric bypass surgery and a physiological model of body water, fat and muscle composition. J Appl Physiol 109:786–795

    Article  PubMed  Google Scholar 

  30. Uusi-Rasi K, Sievänen H, Kannus P, Pasanen M, Kukkonen-Harjula K, Folgelholm M (2009) Influence of weight reduction on muscle performance and bone mass, structure and metabolism in obese premenopausal women. J Musculoskelet Neuronal Interact 9:72–80

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported, in part, by Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, and FIS-08/0105, Ministerio de Ciencia e Innovación, Spain.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guañabens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guañabens, N., Monegal, A., Muxi, A. et al. Patients with cirrhosis and ascites have false values of bone density. Osteoporos Int 23, 1481–1487 (2012). https://doi.org/10.1007/s00198-011-1756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1756-1

Keywords

Navigation