Skip to main content

Advertisement

Log in

Bone and fat relationships in postadolescent black females: a pQCT study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Despite adolescent black females experiencing the highest rates of obesity, the effect of excess fat mass on bone structure and strength in this population is unknown. Our findings in postadolescent black females suggest that excess weight in the form of fat mass may adversely influence cortical bone structure and strength.

Introduction

Although adolescent obesity has been associated with reduced bone structure and strength in white females, this relationship has not been studied in adolescent black females, a population experiencing the highest rates of obesity. Our objective was to compare bone structure and strength between postadolescent black females with normal and high levels of adiposity.

Methods

Black females with ≤32% body fat were classified as normal body fat (NF; n = 33, aged 19.3 ± 1.3 years); females exceeding this cutoff were classified as high body fat (HF; n = 15, aged 19.0 ± 1.1 years). Using peripheral quantitative computed tomography, tibial and radial bones were scanned at the 4% (trabecular) and 20% (cortical) sites from the distal metaphyses. Fat-free soft-tissue mass (FFST) and %body fat were assessed by dual-energy X-ray absorptiometry.

Results

After controlling for either FFST or body weight, the HF vs. NF group had lower total cross-sectional area (CSA; 9–17%), cortical CSA (6–15%), and strength–strain index (SSI; 13–24%) at the cortical site of the tibia (all p < 0.05). At the cortical site of the radius, the HF vs. NF group had lower total CSA (14%, p = 0.03), cortical CSA (9%, p = 0.04), and SSI (15%, p = 0.07) after control for body weight. There were no group differences in either the FFST-adjusted cortical bone values at the radius or in the trabecular bone parameters (body weight- or FFST-adjusted) at the tibia and radius.

Conclusions

Consistent with our adiposity and bone data in late-adolescent white females, our findings in black females entering adulthood also suggest that obesity may adversely influence cortical bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148

    Article  CAS  PubMed  Google Scholar 

  2. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    Article  CAS  PubMed  Google Scholar 

  3. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V (2001) Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 16:1337–1342

    Article  CAS  PubMed  Google Scholar 

  4. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res 20:2090–2096

    Article  PubMed  Google Scholar 

  5. Taylor ED, Theim KR, Mirch MC, Ghorbani S, Tanofsky-Kraff M, Adler-Wailes DC, Brady S, Reynolds JC, Calis KA, Yanovski JA (2006) Orthopedic complications of overweight in children and adolescents. Pediatrics 117:2167–2174

    Article  PubMed  Google Scholar 

  6. Pollack KM, Xie D, Arbogast KB, Durbin DR (2008) Body mass index and injury risk among US children 9–15 years old in motor vehicle crashes. Inj Prev 14:366–371

    Article  CAS  PubMed  Google Scholar 

  7. Dimitri P, Wales J, Bishop N (2009) Fat and bone in children-differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res. 25(3):527–536

    Article  Google Scholar 

  8. De Schepper J, Van den Broeck M, Jonckheer MH (1995) Study of lumbar spine bone mineral density in obese children. Acta Paediatr 84:313–315

    Article  PubMed  Google Scholar 

  9. Ellis KJ, Shypailo RJ, Wong WW, Abrams SA (2003) Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol 40(Suppl 1):S274–S277

    Article  PubMed  Google Scholar 

  10. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  11. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541

    Article  CAS  PubMed  Google Scholar 

  12. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  CAS  PubMed  Google Scholar 

  13. Goulding A, Taylor RW, Jones IE, Manning PJ, Williams SM (2002) Spinal overload: a concern for obese children and adolescents? Osteoporos Int 13:835–840

    Article  CAS  PubMed  Google Scholar 

  14. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB (2005) Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36:568–576

    Article  PubMed  Google Scholar 

  15. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  16. Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147

    Article  CAS  PubMed  Google Scholar 

  17. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD (2007) Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr 86:1530–1538

    CAS  PubMed  Google Scholar 

  18. Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM (2009) Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 90:1104–1111

    Article  CAS  PubMed  Google Scholar 

  19. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  20. FJ SH, Tysarczqk-Niemeyer G, Willnecker J (1996) Non-invasive bone strength index as analyzed y peripheral quantitative computed tomography (pQCT). In: Schoenau E (ed) Pediatric osteology: new developments in diagnosis and therapy. Elsevier, Amsterdam, The Netherlands, pp 141–166

    Google Scholar 

  21. Frost H (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9

    Article  CAS  PubMed  Google Scholar 

  22. Ogden CL, Carroll MD, Flegal KM (2008) High body mass index for age among US children and adolescents, 2003–2006. JAMA 299:2401–2405

    Article  CAS  PubMed  Google Scholar 

  23. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194

    Article  PubMed  Google Scholar 

  24. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med 325:1597–1600

    Article  CAS  PubMed  Google Scholar 

  25. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG (1998) Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 83:1420–1427

    Article  CAS  PubMed  Google Scholar 

  26. Wetzsteon RJ, Hughes JM, Kaufman BC, Vazquez G, Stoffregen TA, Stovitz SD, Petit MA (2009) Ethnic differences in bone geometry and strength are apparent in childhood. Bone 44:970–975

    Article  CAS  PubMed  Google Scholar 

  27. Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606

    Article  CAS  PubMed  Google Scholar 

  28. Afghani A, Goran MI (2006) Racial differences in the association of subcutaneous and visceral fat on bone mineral content in prepubertal children. Calcif Tissue Int 79:383–388

    Article  CAS  PubMed  Google Scholar 

  29. Seeman E (1998) Growth in bone mass and size—are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 83:1414–1419

    Article  CAS  PubMed  Google Scholar 

  30. Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224

    CAS  PubMed  Google Scholar 

  31. Klein GL, Fitzpatrick LA, Langman CB, Beck TJ, Carpenter TO, Gilsanz V, Holm IA, Leonard MB, Specker BL (2005) The state of pediatric bone: summary of the ASBMR pediatric bone initiative. J Bone Miner Res 20:2075–2081

    Article  PubMed  Google Scholar 

  32. Schoenau E (2005) From mechanostat theory to development of the “Functional Muscle-Bone-Unit”. J Musculoskelet Neuronal Interact 5:232–238

    CAS  PubMed  Google Scholar 

  33. National Institutes of Health Office of Extramural Research. NIH Policy and Guidelines on the Inclusion of Women and Minorities as Subjects in Clinical Research. In

  34. Martin RB (1991) Determinants of the mechanical properties of bones. J Biomech 24(Suppl 1):79–88

    Article  PubMed  Google Scholar 

  35. Kontulainen SA, Johnston JD, Liu D, Leung C, Oxland TR, McKay HA (2008) Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis. J Musculoskelet Neuronal Interact 8:401–409

    CAS  PubMed  Google Scholar 

  36. Going SB, Lohman TG, Falls HB (2008) Body composition assessments. In Welk GJ, Meredith, MD (ed) Fitnessgram-activitygram reference guide. The Cooper Institute, pp 10.11-10.18. http://www.cooperinstitute.org/ourkidshealth/fitnessgram/references.cfm. Accessed on December 20, 2009

  37. Berenson GS, Webber LS, Srinivasan SR, Voors AW, Harsha DW, Dalferes ER Jr (1982) Biochemical and anthropometric determinants of serum beta- and pre-beta-lipoproteins in children. Bogalusa Heart Study. Arteriosclerosis 2:325–334

    CAS  PubMed  Google Scholar 

  38. Aristimuno GG, Foster TA, Voors AW, Srinivasan SR, Berenson GS (1984) Influence of persistent obesity in children on cardiovascular risk factors: the Bogalusa Heart Study. Circulation 69:895–904

    CAS  PubMed  Google Scholar 

  39. Williams DP, Going SB, Lohman TG, Harsha DW, Srinivasan SR, Webber LS, Berenson GS (1992) Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am J Public Health 82:358–363

    Article  CAS  PubMed  Google Scholar 

  40. Castro JP, Joseph LA, Shin JJ, Arora SK, Nicasio J, Shatzkes J, Raklyar I, Erlikh I, Pantone V, Bahtiyar G, Chandler L, Pabon L, Choudhry S, Ghadiri N, Gosukonda P, Muniyappa R, Von-Gicyzki H, McFarlane SI (2005) Differential effect of obesity on bone mineral density in White, Hispanic and African American women: a cross sectional study. Nutr Metab (Lond) 2:9

    Article  Google Scholar 

  41. Klein KO, Larmore KA, de Lancey E, Brown JM, Considine RV, Hassink SG (1998) Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 83:3469–3475

    Article  CAS  PubMed  Google Scholar 

  42. McCartney CR, Blank SK, Prendergast KA, Chhabra S, Eagleson CA, Helm KD, Yoo R, Chang RJ, Foster CM, Caprio S, Marshall JC (2007) Obesity and sex steroid changes across puberty: evidence for marked hyperandrogenemia in pre- and early pubertal obese girls. J Clin Endocrinol Metab 92:430–436

    Article  CAS  PubMed  Google Scholar 

  43. Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De Bacquer D, Zmierczak H, Goemaere S, Kaufman JM (2009) Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab 94:2325–2331

    Article  CAS  PubMed  Google Scholar 

  44. Khosla S, Melton LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Oberg AL, Rouleau PA, Riggs BL (2005) Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men. J Bone Miner Res 20:730–740

    Article  PubMed  Google Scholar 

  45. Khosla S, Riggs BL, Robb RA, Camp JJ, Achenbach SJ, Oberg AL, Rouleau PA, Melton LJ 3rd (2005) Relationship of volumetric bone density and structural parameters at different skeletal sites to sex steroid levels in women. J Clin Endocrinol Metab 90:5096–5103

    Article  CAS  PubMed  Google Scholar 

  46. Schiessl H, Frost HM, Jee WS (1998) Estrogen and bone-muscle strength and mass relationships. Bone 22:1–6

    Article  CAS  PubMed  Google Scholar 

  47. Kimm SY, Glynn NW, Kriska AM, Barton BA, Kronsberg SS, Daniels SR, Crawford PB, Sabry ZI, Liu K (2002) Decline in physical activity in black girls and white girls during adolescence. N Engl J Med 347:709–715

    Article  PubMed  Google Scholar 

  48. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TM, Cundy TF (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab 75:45–51

    Article  CAS  PubMed  Google Scholar 

  49. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555

    Article  CAS  PubMed  Google Scholar 

  50. Ackerman A, Thornton JC, Wang J, Pierson RN Jr, Horlick M (2006) Sex difference in the effect of puberty on the relationship between fat mass and bone mass in 926 healthy subjects, 6 to 18 years old. Obesity (Silver Spring) 14:819–825

    Article  Google Scholar 

  51. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  PubMed  Google Scholar 

  52. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. J Bone Miner Res 24:1369–1379

    Article  PubMed  Google Scholar 

  53. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  CAS  PubMed  Google Scholar 

  54. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  CAS  PubMed  Google Scholar 

  55. Martin A, David V, Malaval L, Lafage-Proust MH, Vico L, Thomas T (2007) Opposite effects of leptin on bone metabolism: a dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 148:3419–3425

    Article  CAS  PubMed  Google Scholar 

  56. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to the study subjects for their participation. We also thank Ruth Taylor, Ashley Ferira, and Maria Breen for coordinating the project. NKP, RDL, EML, MWH, CAB, and DBH were responsible for the study concept and design; NKP, EML, and RDL were responsible for the acquisition of the data. NKP and DBH conducted the statistical analyses. NKP, RDL, EML, and DBH, and were responsible for the interpretation of the data and drafting the manuscript. All authors contributed to the revision of the manuscript. None of the authors had any personal or financial conflicts of interest.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Lewis.

Additional information

Funding sources

The University of Georgia Research Foundation and College of Family and Consumer Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, N.K., Laing, E.M., Hamrick, M.W. et al. Bone and fat relationships in postadolescent black females: a pQCT study. Osteoporos Int 22, 655–665 (2011). https://doi.org/10.1007/s00198-010-1266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1266-6

Keywords

Navigation