Skip to main content
Log in

Circulating osteocalcin concentrations are associated with parameters of liver fat infiltration and increase in parallel to decreased liver enzymes after weight loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The expression of liver genes was associated with insulin action in osteocalcin knockout mice. Our findings suggest that osteocalcin may play a role in the development of insulin resistance-associated fatty liver disease.

Introduction

The expression of insulin target genes was decreased in the liver of mice lacking osteocalcin. We aimed to explore the association of liver enzymes with osteocalcin.

Methods

The associations were evaluated in a cross-sectional study (266 men) and following weight loss in 28 obese subjects (nine male, 19 females).

Results

In the cross-sectional study, circulating osteocalcin concentration was negatively associated with alanine transaminase (ALT) (p = 0.002) and aspartate transaminase (AST) levels (p = 0.008). These associations were especially significant in non-obese subjects (n = 191). In a multiple linear regression analysis, age (p = 0.008), insulin sensitivity (p = 0.001), and osteocalcin (p = 0.04) independently contributed to 22% of ALT variance in these latter subjects. In the weight loss study, the increase in circulating osteocalcin concentration (+70.6 ± 29.3 vs. +32 ± 13.5%, p = 0.021) was significantly greater in subjects with the highest decrease in ALT levels, despite similar baseline BMI, insulin resistance and degree of weight loss than remaining subjects. In fact, the change in ALT levels were linearly associated with those of osteocalcin (r = −0.55, p = 0.003).

Conclusions

In summary, our findings suggest a bone–liver axis in which osteocalcin might be the active regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee RG (1989) Non-alcoholic steatohepatitis: a study of 49 patients. Hum Pathol 20:594–598

    Article  CAS  PubMed  Google Scholar 

  2. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW (1990) The natural history of non-alcoholic steatohepatitis: a follow up study of forty-two patients for up to 21years. Hepatology 11:74–80

    Article  PubMed  Google Scholar 

  3. Bacon BR, Farahvash MJ, Janney CG, Neuschwanedr-Tetri BA (1994) Non-alcoholic steatohepatitis: an expanded clinical entity. Gastroenterology 107:1103–1109

    CAS  PubMed  Google Scholar 

  4. Caldwell SH, Oelsner DH, Iezzoni JC, Hespenheide EE, Battle EH, Driscoll CJ (1999) Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease. Hepatology 29:664–669

    Article  CAS  PubMed  Google Scholar 

  5. Ludwig J, Viggiano TR, McGill DB, Ott BJ (1980) Non-alcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55:434–438

    CAS  PubMed  Google Scholar 

  6. Wanless IR, Lentz JS (1990) Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12:1106–1110

    Article  CAS  PubMed  Google Scholar 

  7. Fong D, Nehra V, Lindor KD, Buchman A (2000) Metabolic and nutritional considerations in non-alcoholic fatty liver. Hepatology 32:3–10

    Article  CAS  PubMed  Google Scholar 

  8. Angulo P, Lindor KD (2001) Treatment of non-alcoholic fatty liver: present and emerging therapies. Semin Liver Dis 21:81–88

    Article  CAS  PubMed  Google Scholar 

  9. Wang RT, Koretz RL, Yee HF Jr (2003) Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med 115:554–559

    Article  PubMed  Google Scholar 

  10. Gasteyger C, Larsen TM, Vercruysse F, Astrup A (2008) Effect of a dietary-induced weight loss on liver enzymes in obese subjects. Am J Clin Nutr 87:1141–1147

    CAS  PubMed  Google Scholar 

  11. Andersen T, Gluud C, Franzmann M, Christoffersen P (1991) Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol 12:224–229

    Article  CAS  PubMed  Google Scholar 

  12. Luyckx FH, Desaive C, Thiry A et al (1998) Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty. Int J Obes 22:222–226

    Article  CAS  Google Scholar 

  13. Neuschwander-Tetri BA (2005) Nonalcoholic steatohepatitis and the metabolic syndrome. Am J Med Sci 330:326–335

    Article  PubMed  Google Scholar 

  14. Larson-Meyer DE, Newcomer BR, Heilbronn LK et al (2008) Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity 16:1355–1362

    Article  CAS  PubMed  Google Scholar 

  15. Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  Google Scholar 

  16. Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    Article  CAS  PubMed  Google Scholar 

  17. Hediger ML, England LJ, Molloy CA, Yu KF, Manning-Courtney P, Mills JL (2008) Reduced bone cortical thickness in boys with autism or autism spectrum disorder. J Autism Dev Disord 38:848–856

    Article  PubMed  Google Scholar 

  18. Nocito A, Dahm F, Jochum W et al (2007) Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology 133:608–618

    Article  CAS  PubMed  Google Scholar 

  19. Fernández-Real JM, Izquierdo M, Ortega F et al (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94:237–245

    Article  PubMed  Google Scholar 

  20. Gubern C, López-Bermejo A, Biarnés J, Vendrell J, Ricart W, Fernández-Real JM (2006) Natural antibiotics and insulin sensitivity: the role of bactericidal and permeability increasing protein (BPI). Diabetes 55:216–224

    Article  CAS  PubMed  Google Scholar 

  21. Fernandez-Real JM, Lopez-Bermejo A, Vendrell J, Ferri MJ, Recasens M, Ricart W (2006) Burden of infection and insulin resistance in healthy middle-aged men. Diabetes Care 29:1058–1064

    Article  CAS  PubMed  Google Scholar 

  22. Gómez-Ambrosi J, Salvador J et al (2006) Increased cardiovascular risk markers in obesity are associated with body adiposity: role of leptin. Thromb Haemost 95:991–996

    PubMed  Google Scholar 

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  24. Gómez-Ambrosi J, Salvador J, Páramo JA et al (2002) Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin Biochem 35:315–320

    Article  PubMed  Google Scholar 

  25. Gómez-Ambrosi J, Rodríguez A, Catalán V, Frühbeck G (2008) The bone–adipose axis in obesity and weight loss. Obes Surg 18:1134–1143

    Article  PubMed  Google Scholar 

  26. Hay JE, Lindor KD, Wiesner RH (1991) The metabolic bone disease of primary sclerosing cholangitis. Hepatology 14:257–261

    Article  CAS  PubMed  Google Scholar 

  27. Lindor KD, Janes CH, Crippin JS, Jorgensen RA, Dickson ER (1995) Bone disease in primary biliary cirrhosis: does ursodeoxycholic acid make a difference? Hepatology 21:389–392

    CAS  PubMed  Google Scholar 

  28. Diamond TH, Stiel D, Lunzer M, McDowall D, Eckstein RP, Posen S (1989) Hepatic osteodystrophy static and dynamic bone histomorphometry and bone Gla-protein in 80 patients with chronic liver disease. Gastroenterology 96:213–221

    CAS  PubMed  Google Scholar 

  29. Diamond-Hodgson SF, Dickson ER, Wahner HW, Johnson KA, Mann KG, Riggs BL (1985) Bone loss and reduced osteoblast function in primary biliary cirrhosis. Ann Intern Med 103:855–860

    Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Fernández-Real.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Real, J.M., Ortega, F., Gómez-Ambrosi, J. et al. Circulating osteocalcin concentrations are associated with parameters of liver fat infiltration and increase in parallel to decreased liver enzymes after weight loss. Osteoporos Int 21, 2101–2107 (2010). https://doi.org/10.1007/s00198-010-1174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1174-9

Keywords

Navigation