Skip to main content
Log in

Detecting early bone changes using in vivo micro-CT in ovariectomized, zoledronic acid-treated, and sham-operated rats

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study monitored in vivo the effect on bone microarchitecture of initiating antiresorptive treatment with zoledronic acid in rats at 2 weeks following ovariectomy, an early phase at which major degenerative bone changes have been found to occur. The treatment still facilitated the full reversal of cancellous bone loss in rat tibia, highlighting the importance of the time point of initiation of antiresorptive treatment.

Introduction

Injection of zoledronic acid in rats at time of ovariectomy has been found to fully preserve tibial bone microarchitecture over time, whereas injection at 8 weeks after ovariectomy has shown partial bone recovery. This study investigated the effect on microarchitecture of initiating antiresorptive treatment in the early phase following ovariectomy, at 2 weeks, a time point at which major degenerative changes in the bone have been found to occur.

Methods

Female Sprague–Dawley rats were divided into ovariectomized group, ovariectomized group treated with zoledronic acid, and sham-operated group. In vivo micro-CT scanning of rat tibiae and morphometric analysis were performed at 0, 2, 4, 8, and 12 weeks after ovariectomy, with zoledronic acid treatment beginning 2 weeks after ovariectomy. Data were first analyzed with repeated measures analysis of variance (longitudinal study design) and then without repeated measures (cross-sectional study design).

Results

The ovariectomized group demonstrated dramatic bone loss, first detected at week 2. Conversely, at week 4, the zoledronic acid-treated group returned microstructural parameters to baseline values. Remarkable increases in bone parameters were found after 6 weeks of treatment and maintained similar to sham group until the end. The longitudinal study design provided earlier detection of bone changes compared to the cross-sectional study design.

Conclusions

Treatment with zoledronic acid as late as 2 weeks after ovariectomy still facilitates the full reversal of cancellous bone loss in the rat tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, Nordin BE, Barrett-Connor E, Black D, Bonjour JP, Dawson-Hughes B, Delmas PD, Dequeker J, Ragi Eis S, Gennari C, Johnell O, Johnston CC Jr, Lau EM, Liberman UA, Lindsay R, Martin TJ, Masri B, Mautalen CA, Meunier PJ, Khaltaev N et al (1999) Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  2. WHO (1994) World Health Organisation, Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Report of a WHO Study Group. Technical Report Series, Nr. 843, WHO, Geneva

  3. Müller R, Hahn M, Vogel M, Delling G, Rüegsegger P (1996) Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 18:215–220

    Article  PubMed  Google Scholar 

  4. Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  CAS  PubMed  Google Scholar 

  5. MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29:1096–1105

    Article  PubMed  Google Scholar 

  6. Mueller TL, Stauber M, Kohler T, Eckstein F, Müller R, van Lenthe GH (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371

    Article  PubMed  Google Scholar 

  7. Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  CAS  PubMed  Google Scholar 

  8. Dempster DW, Birchman R, Xu R, Lindsay R, Shen V (1995) Temporal changes in cancellous bone structure of rats immediately after ovariectomy. Bone 16:157–161

    Article  CAS  PubMed  Google Scholar 

  9. Hornby SB, Evans GP, Hornby SL, Pataki A, Glatt M, Green JR (2003) Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 72:519–527 Epub 2003 Feb 2010

    Article  CAS  PubMed  Google Scholar 

  10. Glatt M, Pataki A, Evans GP, Hornby SB, Green JR (2004) Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int 15:707–715 Epub 2004 Mar 2013

    Article  CAS  PubMed  Google Scholar 

  11. Boyd SK, Davison P, Müller R, Gasser JA (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39:854–862 Epub 2006 Jun 2006

    Article  PubMed  Google Scholar 

  12. Brouwers JE, Lambers FM, Gasser JA, van Rietbergen B, Huiskes R (2008) Bone degeneration and recovery after early and late bisphosphonate treatment of ovariectomized Wistar rats assessed by in vivo micro-computed tomography. Calcif Tissue Int 82:202–211

    Article  CAS  PubMed  Google Scholar 

  13. Toromanoff A, Ammann P, Riond JL (1998) Early effects of short-term parathyroid hormone administration on bone mass, mineral content, and strength in female rats. Bone 22:217–223

    Article  CAS  PubMed  Google Scholar 

  14. Kapadia RD, Stroup GB, Badger AM, Koller B, Levin JM, Coatney RW, Dodds RA, Liang X, Lark MW, Gowen M (1998) Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technol Health Care 6:361–372

    CAS  PubMed  Google Scholar 

  15. Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12:936–941

    Article  CAS  PubMed  Google Scholar 

  16. Lane NE, Thompson JM, Haupt D, Kimmel DB, Modin G, Kinney JH (1998) Acute changes in trabecular bone connectivity and osteoclast activity in the ovariectomized rat in vivo. J Bone Miner Res 13:229–236

    Article  CAS  PubMed  Google Scholar 

  17. Kinney JH, Lane NE, Haupt DL (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10:264–270

    Article  CAS  PubMed  Google Scholar 

  18. Kinney JH, Ryaby JT, Haupt DL, Lane NE (1998) Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis. Technol Health Care 6:339–350

    CAS  PubMed  Google Scholar 

  19. Waarsing JH, Day JS, Verhaar JA, Ederveen AG, Weinans H (2006) Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats. J Orthop Res 24:926–935

    Article  PubMed  Google Scholar 

  20. David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C, Rüegsegger P, Vico L (2003) Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res 18:1622–1631

    Article  PubMed  Google Scholar 

  21. Brouwers JE, van Rietbergen B, Bouxsein ML (2008) Influence of early and late zoledronic acid administration on vertebral structure and strength in ovariectomized rats. Calcif Tissue Int 83:186–191

    Article  CAS  PubMed  Google Scholar 

  22. Campbell GM, Buie HR, Boyd SK (2008) Signs of irreversible architectural changes occur early in the development of experimental osteoporosis as assessed by in vivo micro-CT. Osteoporos Int 19:1409–1419

    Article  CAS  PubMed  Google Scholar 

  23. Green JR, Muller K, Jaeggi KA (1994) Preclinical pharmacology of CGP 42'446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 9:745–751

    Article  CAS  PubMed  Google Scholar 

  24. Gasser JA, Ingold P, Venturiere A, Shen V, Green JR (2007) Long-term protective effects of zoledronic acid on cancellous and cortical bone in the ovariectomized rat. J Bone Miner Res 11:11

    Google Scholar 

  25. Brouwers JEM, Ruchelsman M, Rietbergen BV, Bouxsein ML (2009) Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats. Osteoporos Int 20(8):1377–1384

    Article  CAS  PubMed  Google Scholar 

  26. Lane NE, Haupt D, Kimmel DB, Modin G, Kinney JH (1999) Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J Bone Miner Res 14:206–214

    Article  CAS  PubMed  Google Scholar 

  27. Perilli E, Baruffaldi F, Bisi MC, Cristofolini L, Cappello A (2006) A physical phantom for the calibration of three-dimensional X-ray microtomography examination. J Microsc 222:124–134

    Article  CAS  PubMed  Google Scholar 

  28. Hildebrand T, Rüegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  29. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21:163–169

    Article  Google Scholar 

  30. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  31. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone lossImplications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Article  CAS  PubMed  Google Scholar 

  32. Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  33. Leitner MM, Tami AE, Montavon PM, Ito K (2008) Longitudinal as well as age-matched assessments of bone changes in the mature ovariectomized rat model. Lab Anim 43(3):266–271

    Article  PubMed  CAS  Google Scholar 

  34. Wronski TJ, Dann LM, Horner SL (1989) Time course of vertebral osteopenia in ovariectomized rats. Bone 10:295–301

    Article  CAS  PubMed  Google Scholar 

  35. Wronski TJ, Dann LM, Qi H, Yen CF (1993) Skeletal effects of withdrawal of estrogen and diphosphonate treatment in ovariectomized rats. Calcif Tissue Int 53:210–216

    Article  CAS  PubMed  Google Scholar 

  36. Amanat N, McDonald M, Godfrey C, Bilston L, Little D (2007) Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res 22:867–876

    Article  CAS  PubMed  Google Scholar 

  37. Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19:1331–1341

    Article  CAS  PubMed  Google Scholar 

  38. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA Guidelines and animal models for osteoporosis. Bone 17:125S–133S

    Article  CAS  PubMed  Google Scholar 

  39. Andersson N, Surve VV, Lehto-Axtelius D, Andersson K, Ryberg B, Ohlsson C, Hakanson R (2004) Pharmacological treatment of osteopenia induced by gastrectomy or ovariectomy in young female rats. Acta Orthop Scand 75:201–209

    Article  PubMed  Google Scholar 

  40. Müller R, Rüegsegger P (1997) Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture. Stud Health Technol Inform 40:61–79

    PubMed  Google Scholar 

  41. Day JS, Ding M, Odgaard A, Sumner DR, Hvid I, Weinans H (2000) Parallel plate model for trabecular bone exhibits volume fraction-dependent bias. Bone 27:715–720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by a grant from the Australian Research Council (DP0663271).

Conflicts of interest

Dr. Phil Salmon is an employee at Skyscan NV, Belgium. All the other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Perilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perilli, E., Le, V., Ma, B. et al. Detecting early bone changes using in vivo micro-CT in ovariectomized, zoledronic acid-treated, and sham-operated rats. Osteoporos Int 21, 1371–1382 (2010). https://doi.org/10.1007/s00198-009-1082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1082-z

Keywords

Navigation