Skip to main content

Advertisement

Log in

The aluminum content of bone increases with age, but is not higher in hip fracture cases with and without dementia compared to controls

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Aluminum is considered a potentially toxic metal, and aluminum poisoning may lead to three types of disorders: aluminum-induced bone disease, microcytic anemia and encephalopathy. This is well known in patients with chronic renal failure, but since healthy subjects with normal renal function retain 4% of the aluminum consumed, they are also at risk of long-term low-grade aluminum intoxication. Included in this study were a total of 172 patients (age range 16–98 years) with the aim of examining whether aluminum accumulates in bone with increasing age. Additionally, we aimed to investigate whether the aluminum content of bone differs between controls and hip fracture cases with and without dementia, in particular in those with Alzheimer’s disease. During operations for all cases, bone biopsies were taken with an aluminum-free instrument from the trabecular bone. The samples were measured for their content of aluminum using an inductively coupled mass spectrometer. We found an exponential increase in aluminum content of bone with age. The average aluminum values, adjusted for age, were similar in men and women (P=0.46). No significant differences in sex- and age-adjusted mean aluminum values between the controls and the hip fracture cases with (P=0.72) and without (P=0.33) dementia could be detected. The average aluminum concentration among cases with Alzheimer’s disease was also similar to the values of hip fracture patients with other types of dementia (P=0.47). Odds ratios of hip fracture for each quartile of aluminum content in bone were also estimated to detect non-linear effects, but we did not find any statistically significant association remaining after age and sex adjustment. Thus, our results indicate that we accumulate aluminum in bone over our life span, but this does not seem to be of major pathogenetic significance for the occurrence of hip fracture or dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfrey AC (1983) Aluminum. Adv Clin Chem 23:69–91

    PubMed  Google Scholar 

  2. Varo P, Koivistoinen P (1980) Mineral element composition of Finish foods. Acta Agric Scand 22:161–171

    Google Scholar 

  3. Drüeke TB (2002) Intestinal absorption of aluminum in renal failure. Nephrol Dial Transplant 17 [Suppl 2]:13–16

    Google Scholar 

  4. Priest ND (1999) Aluminum. Occurrence and toxicity. In: Sadler JJ, Caballero B (eds) Encyclopedia of human nutrition. Academic Press, San Diego, pp 59–66

  5. Yokel RA, McNamara PJ (2001) Aluminum toxicokinetics: an updated minireview. Pharmacol Toxicol 88:159–167

    Article  PubMed  Google Scholar 

  6. Pérez-Granados AM, Vaquero MP (2002) Silicon, aluminum, arsenic and lithium: essentiality and human health implications. J Nutr Health Aging 6:154–162

    PubMed  Google Scholar 

  7. Priest ND (2004) The biological behaviour and bioavailability of aluminum in man, with special reference to studies employing aluminum-26 as a tracer: review and study update. J Environ Monit 6:375–403

    Article  PubMed  Google Scholar 

  8. Moore PB, Day JP, Taylor GA, Ferrier IN, Fifield LK, Edwardson JA (2000) Absorption of aluminum-26 in Alzheimer’s disease, measured using accelerator mass spectrometry. Dement Geriatr Cognit Disord 11:66–69

    Article  Google Scholar 

  9. Taylor GA, Ferrier IN, McLoughlin IJ, Fairbairn AF, McKeith IG, Lett D, Edwardson JA (1992) Gastrointestinal absorption of aluminum in Alzheimer’s disease: response to aluminum citrate. Age Ageing 21:81–90

    PubMed  Google Scholar 

  10. Alfrey AC (1987) Aluminum metabolism and toxicity in uremia. J UOEH [Suppl] 9:123–132

    Google Scholar 

  11. Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med 294:184–188

    PubMed  Google Scholar 

  12. Berlyne GM (1970) Hyperaluminaemia from aluminum resins. Lancet 2:1253

    Article  Google Scholar 

  13. Berlyne GM, Yagil R, Ari JB, Weinberger G, Knopf E, Danovitch GM (1972) Aluminum toxicity in rats. Lancet 1:564–568

    Article  PubMed  Google Scholar 

  14. Cannata-Andia JB, Fernandez-Martin JL (2002) The clinical impact of aluminum overload in renal failure. Nephrol Dial Transplant 17 [Suppl 2]:9–12

    Google Scholar 

  15. Hewitt CD, Savory J, Wills MR (1990) Aspects of aluminum toxicity. Clin Lab Med 10:403–422

    PubMed  Google Scholar 

  16. Nebeker HG, Coburn JW (1986) Aluminum and renal osteodystrophy. Ann Rev Med 37:79–95

    Article  PubMed  Google Scholar 

  17. Parkinson IS, Ward MK, Feest TG, Fawcett RW, Kerr DN (1979) Fracturing dialysis osteodystrophy and dialysis encephalopathy. An epidemiological survey. Lancet 1:406–409

    Article  PubMed  Google Scholar 

  18. Sherrard DJ (1974) Letter: the myth of aluminum toxicity. N Engl J Med 290:750

    Google Scholar 

  19. Ward MK, Feest TG, Ellis HA, Parkinson IS, Kerr DN (1978) Osteomalacic dialysis osteodystrophy: evidence for a water-borne aetiological agent, probably aluminum. Lancet 1:841–845

    Article  PubMed  Google Scholar 

  20. Mjoberg B (1989) Aluminum-induced hip fractures: a hypothesis. J Bone Joint Surg Br 71:538

    PubMed  Google Scholar 

  21. Mjoberg B, Hellquist E, Mallmin H, Lindh U (1997) Aluminum, Alzheimer’s disease and bone fragility. Acta Orthop Scand 68:511–514

    PubMed  Google Scholar 

  22. Klein GL (1995) Aluminum in parenteral solutions revisited—again. Am J Clin Nutr 61:449–456

    PubMed  Google Scholar 

  23. Ott SM, Maloney NA, Klein GL, Alfrey AC, Ament ME, Coburn JW, Sherrard DJ (1983) Aluminum is associated with low bone formation in patients receiving chronic parenteral nutrition. Ann Intern Med 98:910–914

    PubMed  Google Scholar 

  24. Vargas JH, Klein GL, Ament ME, Ott SM, Sherrard DJ, Horst RL, Berquist WE, Alfrey AC, Slatopolsky E, Coburn JW (1988) Metabolic bone disease of total parenteral nutrition: course after changing from casein to amino acids in parenteral solutions with reduced aluminum content. Am J Clin Nutr 48:1070–1078

    PubMed  Google Scholar 

  25. Bush VJ, Moyer TP, Batts KP, Parisi JE (1995) Essential and toxic element concentrations in fresh and formalin-fixed human autopsy tissues. Clin Chem 41:284–294

    PubMed  Google Scholar 

  26. Tahán JE, Granadillo VA, Romero RA (1994) Electrothermal atomic absorption spectrometric determination of Al, Cu, Fe, Pb, V and Zn in clinical samples and in certified environmental reference materials. Anal Chim Acta 295:187–197

    Article  Google Scholar 

  27. Tang S, Parsons PJ, Perl D (1999) Longitudinal and lateral variations in the aluminum concentration of selected caprine, bovine, and human bone samples. Biol Trace Elem Res 68:267–279

    PubMed  Google Scholar 

  28. Campbell A (2002) The potential role of aluminum in Alzheimer’s disease. Nephrol Dial Transplant 17 [Suppl 2]:17–20

    Google Scholar 

  29. Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565–572

    Article  PubMed  Google Scholar 

  30. Foster HD (2002) Why the preeminent risk factor in sporadic Alzheimer’s disease cannot be genetic. Med Hypotheses 59:57–61

    Article  PubMed  Google Scholar 

  31. Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimer Dis 4:179–189

    Google Scholar 

  32. Matsuzaki S, Manabe T, Katayama T, Nishikawa A, Yanagita T, Okuda H, Yasuda Y, Miyata S, Meshitsuka S, Tohyama M (2004) Metals accelerate production of the aberrant splicing isoform of the presenilin-2. J Neurochem 88:1345–1351

    PubMed  Google Scholar 

  33. Pedersen NL, Gatz M, Berg S, Johansson B (2004) How heritable is Alzheimer’s disease late in life? Findings from Swedish twins. Ann Neurol 55:180–185

    Article  PubMed  Google Scholar 

  34. Pedersen NL, Posner SF, Gatz M (2001) Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings in Swedish twins. Am J Med Genet 105:724–728

    Article  PubMed  Google Scholar 

  35. Buchner DM, Larson EB (1987) Falls and fractures in patients with Alzheimer-type dementia. JAMA 257:1492–1495

    Article  PubMed  Google Scholar 

  36. Gruber-Baldini AL, Zimmerman S, Morrison RS, Grattan LM, Hebel JR, Dolan MM, Hawkes W, Magaziner J (2003) Cognitive impairment in hip fracture patients: timing of detection and longitudinal follow-up. J Am Geriatr Soc 51:1227–1236

    Article  PubMed  Google Scholar 

  37. Walter LC, Lui LY, Eng C, Covinsky KE (2003) Risk of hip fracture in disabled community-living older adults. J Am Geriatr Soc 51:50–55

    Article  PubMed  Google Scholar 

  38. Weller I, Schatzker J (2004) Hip fractures and Alzheimer’s disease in elderly institutionalized Canadians. Ann Epidemiol 14:319–324

    Article  PubMed  Google Scholar 

  39. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    PubMed  Google Scholar 

  40. Hellstrom HO, Lindh U, Mjoberg B (2000) Measurement accuracy of aluminum content in bone. Ups J Med Sci 105:67–71

    PubMed  Google Scholar 

  41. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  42. Gomez-Alonso C, Menendez-Rodriguez P, Virgos-Soriano MJ, Fernandez-Martin JL, Fernandez-Coto MT, Cannata-Andia JB (1999) Aluminum-induced osteogenesis in osteopenic rats with normal renal function. Calcif Tissue Int 64:534–541

    Article  PubMed  Google Scholar 

  43. Delmas PD, Recker RR, Chesnut CH 3, Skag A, Stakkestad JA, Emkey R, Gilbride J, Schimmer RC, Christiansen C (2004) Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int 15:792–798

    Article  PubMed  Google Scholar 

  44. Quarles LD (1991) Paradoxical toxic and trophic osseous actions of aluminum: potential explanations. Miner Electrolyte Metab 17:233–239

    PubMed  Google Scholar 

  45. Quarles LD, Gitelman HJ, Drezner MK (1989) Aluminum-induced de novo bone formation in the beagle. A parathyroid hormone-dependent event. J Clin Invest 83:1644–1650

    PubMed  Google Scholar 

  46. Quarles LD, Murphy G, Vogler JB, Drezner MK (1990) Aluminum-induced neo-osteogenesis: a generalized process affecting trabecular networking in the axial skeleton. J Bone Miner Res 5:625–635

    PubMed  Google Scholar 

  47. Rodriguez M, Felsenfeld AJ, Llach F (1990) Aluminum administration in the rat separately affects the osteoblast and bone mineralization. J Bone Miner Res 5:59–67

    PubMed  Google Scholar 

  48. Zhu JM, Huffer W, Alfrey AC (1990) Effect of aluminum on bone matrix inductive properties. Kidney Int 38:1141–1145

    PubMed  Google Scholar 

  49. Cumming RG, Klineberg RJ (1994) Aluminum in antacids and cooking pots and the risk of hip fractures in elderly people. Age Ageing 23:468–472

    PubMed  Google Scholar 

  50. O’Mahony D, Denton J, Templar J, O’Hara M, Day JP, Murphy S, Walsh JB, Coakley D (1995) Bone aluminum content in Alzheimer’s disease. Dementia 6:69–72

    PubMed  Google Scholar 

  51. Ganrot PO (1986) Metabolism and possible health effects of aluminum. Environ Health Perspect 65:363–441

    PubMed  Google Scholar 

  52. D’Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, Cabrera WE, De Broe ME (1999) Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem 45:1548–1556

    PubMed  Google Scholar 

  53. Navarro JA, Granadillo VA, Salgado O, Rodriguez-Iturbe B, Garcia R, Delling G, Romero RA (1992) Bone metal content in patients with chronic renal failure. Clin Chim Acta 211:133–142

    Article  PubMed  Google Scholar 

  54. Paakari P, Anker Nielsen A, Lauritsen P, Morkore H, Voipio T, Sigfússon E, Litleskare I, Ericsson O, Nielsen J (2004) Medicines Consumption in the Nordic Countries 1999–2003, http://www.nom-nos.dk/Medicinebook/medicines%20consumption.pdf. Schultz Information, Albertslund, Denmark

  55. Pennington JA (1988) Aluminum content of foods and diets. Food Addit Contam 5:161–232

    PubMed  Google Scholar 

Download references

Acknowledgements

The study was sponsored by the Swedish Alzheimer Foundation and the Swedish Research Council. Sincere thanks are due to Lena Dalnert and Lotta Claesson, group leaders on OR, for their untiring efforts. We also wish to thank Assistant Professor Ulf Lindh and PhD student Peter Frisk for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Olov Hellström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellström, HO., Mjöberg, B., Mallmin, H. et al. The aluminum content of bone increases with age, but is not higher in hip fracture cases with and without dementia compared to controls. Osteoporos Int 16, 1982–1988 (2005). https://doi.org/10.1007/s00198-005-1981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1981-6

Keywords

Navigation