Skip to main content

Advertisement

Log in

Serum osteoprotegerin and receptor activator of nuclear factor-κB ligand (RANKL) concentrations in allogeneic stem cell transplant-recipients: a role in bone loss?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Purpose: Osteoporosis is a long-term complication of allogeneic stem cell transplantation (SCT). Receptor activator of nuclear factor-κB ligand (RANKL) increases osteoclast activity, while osteoprotegerin (OPG) neutralizes RANKL. A deficiency of OPG or an excess of RANKL may contribute to post-SCT bone loss. Methods: Serum OPG and soluble RANKL (sRANKL) concentrations were determined in 30 patients who received calcium, vitamin D and sex steroids – with or without pamidronate – prior to SCT and 1, 3, 6, and 12 months post-SCT and compared to those in healthy controls. Results: Despite all treatments patients lost bone at the hip. At baseline, serum OPG was similar in patients and controls; in the two patient groups it increased by 26–27% at 6 months post-SCT (p=0.002–0.028) and over the control level (p=0.002). Serum sRANKL concentrations were also similar in patients and controls at baseline. In those patients receiving pamidronate sRANKL concentrations decreased by 42% (p=0.0007) at 3 months post-SCT. The findings on the effect of SCT on OPG and sRANKL serum levels were ascertained in 28 additional patients who did not receive pamidronate, at a median of 122 days after SCT. In this latter group, OPG but not sRANKL concentrations were clearly elevated (p<0.001) in comparison to healthy controls. In conclusion, the present study fails to support the view that an excess of sRANKL or a deficiency of OPG would have a substantial impact on bone loss in SCT-recipients. Conclusion: Serum sRANKL concentrations may be modulated by bisphosphonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ebeling PR, Thomas DM, Ebras B et al. (1999) Mechanism of bone loss following allogeneic and autologous hemopoietic stem cell transplantation. J Bone Miner Res 14:342–350

    Article  PubMed  CAS  Google Scholar 

  2. Välimäki MJ, Kinnunen K, Volin L et al. (1999) A prospective study of bone loss and turnover after allogeneic bone marrow transplantation; effect of calcium supplementation with or without calcitonin. Bone Marrow Transplant 23:355–361

    Article  PubMed  Google Scholar 

  3. Kang MI, Lee WY, Oh KW et al (2000) The short-term changes of bone mineral metabolism following bone marrow transplantation. Bone 26:275–279

    Article  PubMed  CAS  Google Scholar 

  4. Schulte C, Beelen DW, Schaefer UW, Mann K (2000) Bone loss in long-term survivors after transplantation of hematopoietic stem cells: a prospective study. Osteoporos Int 11:344–353

    Article  PubMed  CAS  Google Scholar 

  5. Lee WY, Cho SW, Oh ES et al. (2002) The effects of bone marrow transplantation on the osteoblastic differentiation of human bone stromal cells. J Clin Endocrinol Metab 87:329–335

    Article  PubMed  CAS  Google Scholar 

  6. Schulte CMS, Beelen DW (2004) Bone loss following hematopoietic stem cell transplantation: a long-term follow-up. Blood 103:3635–3643

    Article  PubMed  CAS  Google Scholar 

  7. Epstein S (1996) Post-transplantation osteoporosis; the role of immunosuppressive agents and the skeleton. J Bone Miner Res 11:1–7

    Article  PubMed  CAS  Google Scholar 

  8. Kananen K, Volin L, Tähtelä R, Laitinen K, Ruutu T, Välimäki MJ (2002) Recovery of bone mass and normalization of bone turnover in long-term survivors of allogeneic bone marrow transplantation. Bone Marrow Transplant 29:33–39

    Article  PubMed  CAS  Google Scholar 

  9. Lee WY, Cho SW, Oh ES et al. (2002) The role of cytokines in the changes in bone turnover following bone marrow transplantation. Osteoporos Int 13:62–68

    Article  PubMed  CAS  Google Scholar 

  10. Banfi A, Podesta M, Fazzuoli L et al. (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors – a mechanism for post-bone marrow transplantation osteopenia. Cancer 92:2419–2428

    Article  PubMed  CAS  Google Scholar 

  11. Hovi L, Rajantie M, Perkkiö, Sainio K, Sipilä, Siimes MA (1990) Growth failure and growth hormone deficiency in children after bone marrow transplantation for leukaemia. Bone Marrow Transplant 5:183–186

    PubMed  CAS  Google Scholar 

  12. Talvensaari KK, Lanning M, Pääkkö, Tapanainen P, Knip M (1994) Pituitary size assessed with magnetic resonance imaging as a measure of growth hormone secretion in long term survivors of childhood cancer. J Clin Endocrinol Metab 79:635–664

    Article  Google Scholar 

  13. Sullivan KM (2004) Graft-vs. host disease. In: Blume KG, Forman SJ, Appelbaum F (eds) Thomas’ hematopoietic cell transplantation. Blackwell Publishers, Malden, pp 1122–1127

    Google Scholar 

  14. Simmonet WS, Lacey DL, Dunstan CR et al. (1997) Amgen EST program and osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  Google Scholar 

  15. Lacey DL, Timms E, Tan H-L et al. (1998) Osteoprotegerin (OPG) ligand is cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  16. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12

    Article  PubMed  CAS  Google Scholar 

  17. Fohr B, Dunstan CR, Seibel MJ (2003) Markers of bone remodelling in metastatic bone disease. J Clin Endocrinol Metab 88:5059–5075

    Article  PubMed  CAS  Google Scholar 

  18. Hofbauer LC, Shoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495

    Article  PubMed  CAS  Google Scholar 

  19. Bucay N, Sarosi I, Dunstan CR et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  20. Hofbauer LC, Riggs BL, Dunstan CR, O’Brien T, Khosla S (1999) Cyclosporin A and glucocorticoids inhibit osteoprotegerin production in human osteoblastic and coronary artery smooth muscle cells: potential mechanism of post-transplantation osteoporosis and vascular disease. J Bone Miner Res 14[Suppl 1]:S176

    Google Scholar 

  21. Hofbauer LC, Gori F, Riggs B et al. (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140:4382–4389

    Article  PubMed  CAS  Google Scholar 

  22. Fahrleitner A, Prenner G, Kniepeiss D et al. (2002) Serum osteoprotegerin levels in patients after liver transplantation and correlation to bone turnover, bone mineral density and fracture status. Wien Klin Wochensch 114:717–714

    CAS  Google Scholar 

  23. Sato T, Tominaga Y, Iwasaki Y et al. (2001) Osteoprotegerin levels before and after renal transplantation. Am J Kidney Dis 38[Suppl]:S175–S177

    PubMed  CAS  Google Scholar 

  24. Malyszko J, Malyszko JS, Wolczynski S, Mysliwiec M (2003) Osteoprotegerin and its correlations with new markers of bone formation and resorption in kidney transplant recipients. Transplant Proc 35:2227–2229

    Article  PubMed  CAS  Google Scholar 

  25. Kananen K, Volin L, Laitinen K, Alfthan H, Ruutu T, Välimäki MJ (2005) Prevention of bone loss after allogeneic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metabol 90:3877–3885

    Article  CAS  Google Scholar 

  26. Ruutu T, Volin L, Parkkali T et al (2000) Cyclosporine, methotrexate, and methylprednisolone compared with cyclosporine and methotrexate for the prevention of graft-versus-host disease in bone marrow transplantation from HLA-identical sibling donor: a prospective randomized study. Blood 96:2391–2398

    PubMed  CAS  Google Scholar 

  27. Lipton A, Ali SM, Leitzel K et al. (2002) Serum osteoprotegrin levels in healthy controls and cancer patients. Clin Cancer Res 8:2306–2310

    PubMed  CAS  Google Scholar 

  28. Canalis E (2003) Mechanisms of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol 15:454–457

    Article  PubMed  CAS  Google Scholar 

  29. Cohen A, Shane E (2003) Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14:617–630

    Article  PubMed  Google Scholar 

  30. Bornefalk E, Dahlen I, Johanson, Ljunggren O, Ohlson C (1998) Serum levels of osteoprotegerin; effects of glucocorticosteroids and growth hormone. Bone 23[Suppl]:S486

    Google Scholar 

  31. Fahrleitner A, Prenner G, Leb G et al. (2003) Serum osteoprotegerin is a major determinant of bone density development and prevalent vertebral fracture status following cardiac transplantation. Bone 32:96–106

    Article  PubMed  CAS  Google Scholar 

  32. Baek KH, Lee WY, Oh KW et al. (2004) Changes in the serum growth factors and osteoprotegerin after bone marrow transplantation: impact on bone and mineral metabolism. J Clin Endocrinol Metab 89:1246–1254

    Article  PubMed  CAS  Google Scholar 

  33. Bord S, Ireland DC, Beavan SR, Compston JE (2003) The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 32:136–141

    Article  PubMed  CAS  Google Scholar 

  34. Khosla S, Atkinson EJ, Dunstan CR, O’Fallon WM (2002) Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metabol 87:1550–1554

    Article  CAS  Google Scholar 

  35. Kim YH, Kim GS, Jeong-Hwa B (2002) Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp Mol Med 34:145–151

    PubMed  CAS  Google Scholar 

  36. Viereck V, Emons G, Lauck V et al. (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  PubMed  CAS  Google Scholar 

  37. Pan B, Farrugia AN, To LB et al. (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  PubMed  CAS  Google Scholar 

  38. Mackie P, Fisher JL, Zhou H, Choong PF (2001) Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer 84:951–958

    Article  PubMed  CAS  Google Scholar 

  39. Alvarez L, Peris P, Guanabens N et al. (2003) Serum osteoprotegerin and its ligand in Paget’s disease of bone: relationship to disease activity and effect of treatment with bisphosphonates. Arthritis Rheum 48:814–824

    Article  PubMed  CAS  Google Scholar 

  40. Voskaridou E, Terpos E, Spina G et al. (2003) Pamidronate is an effective treatment for osteoporosis in patients with beta-thalassaemia. Br J Haematol 123:730–737

    Article  PubMed  CAS  Google Scholar 

  41. von Tirpitz C, Klaus J, Steinkamp M et al. (2003) Therapy of osteoporosis in patients with Crohn’s disease: a randomized study comparing sodium fluoride and ibandronate. Aliment Pharmacol Ther 17:807–816

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the Jalmari and Rauha Ahokas Foundation, the Research Foundation of Orion Corporation and the Lilly Foundation and by Research Funding from Helsinki University Central Hospital (Erityisvaltionosuus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Välimäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kananen, K., Volin, L., Laitinen, K. et al. Serum osteoprotegerin and receptor activator of nuclear factor-κB ligand (RANKL) concentrations in allogeneic stem cell transplant-recipients: a role in bone loss?. Osteoporos Int 17, 724–730 (2006). https://doi.org/10.1007/s00198-005-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0040-7

Keywords

Navigation