Skip to main content

Advertisement

Log in

Preferential reductions of paraarticular trabecular bone component in ultradistal radius and of calcaneus ultrasonography in early-stage rheumatoid arthritis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a major cause of secondary osteoporosis and is frequently associated with both paraarticular and generalized osteoporosis. The present study was designed to investigate the preferential sites of reduction of bone mineral density (BMD), in the early stage of RA, with special emphasis on the differential effect of RA on BMD in trabecular and cortical components. The participants (30 RA patients and 26 healthy participants) were all female with disease duration of less than 1 year. BMD in the radius was measured at 4% (ultradistal site) and 20% (midshaft) to the ulnar length proximal to the end of radius by peripheral quantitative computed tomography. BMD in lumbar spine was measured by dual X-ray absorptiometry and the osteo-sono assessment index (OSI) of the calcaneus by ultrasound. RA patients showed lower BMD preferentially in the trabecular component, but not in cortical bone component of the ultradistal radius than age-matched normal controls. Calcaneus OSI was also significantly reduced. The radial midshaft and lumbar spine did not differ significantly between RA patients and normal controls. Trabecular BMD in the ultradistal radius exhibited negative correlations with serum CRP, ESR, and RF, and calcaneus OSI with M-HAQ score. In conclusion, it was suggested that disease activity of RA and impairment of daily physical activity might be a significant determinant of deterioration of bone structure in paraartciular distal radius and calcaneus, respectively, in early-stage RA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Inaba M. Ishimura E (2002) Secondary osteoporosis. In: Morii H, Nishizawa Y, Massry SG (eds) Calcium in internal medicine. Springer, Berlin Heidelberg New York, pp 347–360

  2. Deodhar AA, Woolf AD (1996) Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 35:309–322

    CAS  PubMed  Google Scholar 

  3. Yukioka K, Inaba M, Furumitsu Y et al (1994) Levels of hepatocyte growth factor in synovial fluid and serum of patients with rheumatoid arthritis and release of hepatocyte growth factor by rheumatoid synovial fluid cells. J Rheumatol 21:2184–2189

    CAS  PubMed  Google Scholar 

  4. Inaba M, Yukioka K, Furumitsu Y et al (1997) Positive correlation between levels of IL-1 or IL-2 and 1,25(OH)2D/25-OH-D ratio in synovial fluid of patients with rheumatoid arthritis. Life Sciences 61:977–985

    Article  CAS  PubMed  Google Scholar 

  5. Furumitsu Y, Inaba M, Yukioka K et al (2000) Levels of serum and synovial fluid pyridinium crosslinks in patients with rheumatoid arthritis. J Rheumatol 27:64–70

    CAS  PubMed  Google Scholar 

  6. Manolagas SC (1995) Role of cytokines in bone resorption. Bone 17 [Suppl]:63s–67s

  7. Miyasaka N, Sato K, Goto M et al (1988) Augmented interleukin-1 production and HLA-DR expression in the synovium of rheumatoid arthritis patients. Arthritis Rheum 31:480–486

    CAS  PubMed  Google Scholar 

  8. Gowen M, Wood DD, Ihrie EJ et al (1983) An interleukin 1 like factor stimulates bone resorption in vitro. Nature 306:378–380

    CAS  PubMed  Google Scholar 

  9. Inaba M, Morii H, Katsumata T et al (2000) Hyperparathyroidism is augmented by ovariectomy in Nagase analbuminemic rats. J Nutr 130:1543–1547

    CAS  PubMed  Google Scholar 

  10. Neville CE, Murray LJ, Boreham CA et al (2002) Relationship between physical activity and bone mineral status in young adults: the Northern Ireland young hearts project. Bone 30:792–798

    Article  CAS  PubMed  Google Scholar 

  11. Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73–81

    CAS  PubMed  Google Scholar 

  12. Minaur NJ, Kounali D, Vedi S et al (2002) Methotrexate in the treatment of rheumatoid arthritis. II. In vivo effects on bone mineral density. Rheumatology 41:741–749

    Article  CAS  PubMed  Google Scholar 

  13. Sambrook PN, Ansell BM, Foster S, Gumpel JM, Hesp R, Reeve J (1985) Bone turnover in early rheumatoid arthritis. 2. Longitudinal bone densities. Ann Rheum Dis 44:58–584

    Google Scholar 

  14. Boonen S, Cheng XG, Nijs J et al (1997) Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int 60:164–170

    Article  CAS  PubMed  Google Scholar 

  15. Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324

    CAS  PubMed  Google Scholar 

  16. Pincus T, Summey JA, Soraci SA Jr et al (1983) Assessment of patient satisfaction in activities of daily living using a modified Stanford Health Assessment Questionnaire. Arthritis Rheum 26:1346–1353

    CAS  PubMed  Google Scholar 

  17. Maeda T, Yamada T, Nagamine R et al (2002) Involvement of CD4+, CD57+ T cells in the disease activity of rheumatoid arthritis. Arthritis Rheum 46:379–384

    Article  PubMed  Google Scholar 

  18. Nakamura H, Ueki Y, Sakito S et al (2000) Clinical effects of actarit in rheumatoid arthritis: improvement of early disease activity mediated by reduction of serum concentrations of nitric oxide. Clin Exp Rheumatol 18:445–450

    CAS  PubMed  Google Scholar 

  19. Gorai I, Nonaka K, Kishimoto H et al (2001) Cut-off values determined for vertebral fracture by peripheral quantitative computed tomography in Japanese women. Osteoporos Int 12:741–748

    Article  CAS  PubMed  Google Scholar 

  20. Shibuya K, Hagino H, Morio Y et al (2002) Cross-sectional and longitudinal study of osteoporosis in patients with rheumatoid arthritis. Clin Rheumatol 21:150–158

    Article  CAS  PubMed  Google Scholar 

  21. Lochmuller, E-ML, Lill CA, Kuhn V et al (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    PubMed  Google Scholar 

  22. Ashizawa N, Nonaka K, Michikami S et al (1999) Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD. J Appl Physiol 86:1347–1351

    CAS  PubMed  Google Scholar 

  23. Inaba M, Nishizawa Y, Mita K et al (1999) Poor glycemic control impairs the response of biochemical parameters of bone formation and resorption to exogenous 1,25-dihydroxyvitamin D3 in patients with type 2 diabetes. Osteoporos Int 9:525–531

    Article  CAS  PubMed  Google Scholar 

  24. Kumeda Y, Inaba M, Goto H et al (2002) Increased thickness of the arterial intima-media detected by ultrasonography in patients with rheumatoid arthritis. Arthritis Rheum 46:1489–1497

    Article  PubMed  Google Scholar 

  25. Tsuda-Futami E, Hans D, Njeh CF, Fuerst T, Fan B, Li J et al (1999) An evaluation of a new gel-coupled ultrasound device for the quantitative assessment of bone. Br J Radiol 72:691–700

    CAS  PubMed  Google Scholar 

  26. Iwamoto J, Takeda T, Ichimura S (2002) Forearm bone mineral density in postmenopausal women with rheumatoid arthritis. Calcif Tissue Int 70:1–8

    Article  CAS  PubMed  Google Scholar 

  27. Gough AKS, Lilley J, Eyre S et al (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27

    CAS  PubMed  Google Scholar 

  28. Hans D, Wu C, Njeh CF et al (1999) Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23

    Article  CAS  PubMed  Google Scholar 

  29. Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Friedlander AL, Genant HK, Sadowsky S, Byl NN, Gluer CC (1995) A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 10:574–585

    CAS  PubMed  Google Scholar 

  31. Sambrook P, Raj A, Hunter D et al (2001) Osteoporosis with low dose corticosteorids: Contribution of underlying disease effects and discriminatory ability of ultrasound versus bone densitometry. J Rheumatol 28:1063–1067

    CAS  PubMed  Google Scholar 

  32. Van Marken Lichtenbelt WD, Fogelholm M, Ottenheijim R, Westerterp KR (1995) Physical activity, body composition and bone density in ballet dancers. Br J Nutr 74:439–451

    PubMed  Google Scholar 

  33. Minaur NJ, Kounali D, Vedi S, Compston JE, Beresford JN, Bhalla AK (2002) Methotrexate in the treatment of rheumatoid arthritis. II. In vivo effects on bone mineral density. Rheumatology (Oxford) 41:741–749

    Google Scholar 

  34. Cranney AB, McKendry RJ, Wells GA, Ooi DS, Kanigsberg ND, Kraag GR, Smith CD (2001) The effect of low dose methotrexate on bone density. J Rheumatol 28:2395–2399

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Inaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, M., Nagata, M., Goto, H. et al. Preferential reductions of paraarticular trabecular bone component in ultradistal radius and of calcaneus ultrasonography in early-stage rheumatoid arthritis. Osteoporos Int 14, 683–687 (2003). https://doi.org/10.1007/s00198-003-1427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-003-1427-y

Keywords

Navigation