Skip to main content
Log in

Blast wave propagation in survival shelters: experimental analysis and numerical modelling

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The propagation of blast and shock waves in confined environments is a complex phenomenon; yet, being able to derive valid predictions of such phenomena is highly relevant, for example, when it comes to the assessment of protection of personnel in military environments. This study looks at the propagation of blast waves inside a compound survival shelter. Experimental analyses are performed on a small-scale model of the actual configuration of the shelter subjected to the detonation of an explosive charge at different locations close to its entrance. Pressure-time signals are recorded on a number of locations in the model. A numerical model is also developed to complement the experimental programme, based on the explicit finite element (FE) code LS-DYNA. The recorded experimental data (e.g., pressure and impulse) are compared with the numerical predictions to validate the FE model. The authors discuss two different modelling approaches (the Lagrangian and the MM-ALE formulations) and analyse the influence of using a different number of ambient layers, the advection method, the time-step size, and level of discretisation. The proposed numerical model predicts and captures the relevant stages of the propagation of the shock wave very well, with error levels on the resulting specific impulse always lower than 19% when compared to the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lecompte, D., De Schepper, R., Belkassem, B., Kakogiannis, D., Reymen, B., Vantomme, J.: A modular building-block system for lab-scale explosive testing of urban type configurations. 23rd Military Aspects of Blast and Shock, Oxford (2014)

  2. Kinney, G.F., Graham, K.J.: Explosive Shocks in Air. Springer, New York (1985). https://doi.org/10.1007/978-3-642-86682-1

    Book  Google Scholar 

  3. Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier Science B. V., Amsterdam (1983)

    Google Scholar 

  4. Julien, B., Sochet, I., Vaillant, T.: Impact of the volume of rooms on shock wave propagation within a multi-chamber system. Shock Waves 26, 87–108 (2016). https://doi.org/10.1007/s00193-015-0603-2

    Article  Google Scholar 

  5. Smith, P.D., Whalen, G.P., Feng, L.J., Rose, T.A.: Blast loading on buildings from explosions in city streets. Proc. Inst. Civ. Eng. Struct. Build. 146, 47–55 (2001). https://doi.org/10.1680/stbu.2001.146.1.47

    Article  Google Scholar 

  6. Ripley, R.C., von Rosen, B., Ritzel, D.V., Whitehouse, D.R.: Small-scale modeling of explosive blasts in urban scenarios. 21st International Symposium on Ballistics, Adelaide (2004)

  7. Remmenikov, A.M., Rose, T.A.: Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83, 2197–2205 (2005). https://doi.org/10.1016/j.compstruc.2005.04.003

    Article  Google Scholar 

  8. Smith, P.D., Rose, T.A.: Blast wave propagation in city streets—an overview. Prog. Struct. Eng. Mater. 8, 16–28 (2006). https://doi.org/10.1002/pse.209

    Article  Google Scholar 

  9. Fouchier, C., Laboureur, D., Youinou, L., Lapebie, E., Buchlin, J.M.: Experimental investigation of blast wave propagation in an urban environment. J. Loss Prev. Process Ind. 49, 248–265 (2017). https://doi.org/10.1016/j.jlp.2017.06.021

    Article  Google Scholar 

  10. Skews, B.W., Law, W.R.: The propagation of shock waves in a complex tunnel system. J. S. Afr. Inst. Min. Metall. 91, 137–144 (1991)

    Google Scholar 

  11. Smith, P.D., Mays, G.C., Rose, T.A., Teo, K.G., Roberts, B.J.: Small scale models of complex geometry for blast overpressure assessment. Int. J. Impact Eng. 12, 345–360 (1992). https://doi.org/10.1016/0734-743X(92)90112-7

    Article  Google Scholar 

  12. Rigas, F., Sklavounos, S.: Experimentally validated 3-D simulation of shock waves generated by dense explosives in confined complex geometries. J. Hazard. Mater. 121, 23–30 (2005). https://doi.org/10.1016/j.jhazmat.2005.01.031

    Article  Google Scholar 

  13. Sauvan, P.E., Sochet, I., Trélat, S.: Analysis of reflected blast wave pressure profiles in a confined room. Shock Waves 22, 253–264 (2012). https://doi.org/10.1007/s00193-012-0363-1

    Article  Google Scholar 

  14. Geretto, C., Yuen, S.C., Nurick, G.N.: An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading. Int. J. Impact Eng. 79, 32–44 (2015). https://doi.org/10.1016/j.ijimpeng.2014.08.002

    Article  Google Scholar 

  15. Anthistle, T., Fletcher, D.I., Tyas, A.: Characterisation of blast loading in complex, confined geometries using quarter symmetry experimental methods. Shock Waves 26, 749–757 (2016). https://doi.org/10.1007/s00193-016-0621-8

    Article  Google Scholar 

  16. Salvado, F.C., Tavares, A.J., Teixeira-Dias, F., Cardoso, J.B.: Confined explosions: The effect of compartment geometry. J. Loss Prev. Process Ind. 48, 126–144 (2017). https://doi.org/10.1016/j.jlp.2017.04.013

    Article  Google Scholar 

  17. Luccioni, B., Ambrosini, D., Danesi, R.: Blast load assessment using hydrocodes. Eng. Struct. 28, 1736–1744 (2006). https://doi.org/10.1016/j.engstruct.2006.02.016

    Article  Google Scholar 

  18. Zyskowski, A., Sochet, I., Mavrot, G., Bailly, P., Renard, J.: Study of the explosion process in a small scale experiment—structural loading. J. Loss Prev. Process Ind. 17, 291–299 (2004). https://doi.org/10.1016/j.jlp.2004.05.003

    Article  Google Scholar 

  19. Smith, P.D., Hetherington, J.G.: Blast and Ballistic Loading of Structures. Butterworth-Heinemann, Oxford (1994)

    Google Scholar 

  20. Ousji, H., Belkassem, B., Louar, M.A., Kakogiannis, D., Reymen, B., Pyl, L., Vantomme, J.: Parametric study of an explosive-driven shock tube as blast loading tool. Exp. Tech. 40, 1307–1325 (2016). https://doi.org/10.1111/ext.12179

    Article  Google Scholar 

  21. Kingery, C.N., Bulmash, G.: Air-Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, Technical Report ARBRL (TR-02555). Ballistic Research Laboratory, Maryland (1984)

    Google Scholar 

  22. U.S. Department of the Army, Fundamentals of protective design for conventional weapons, Technical manual (TM5-855-1), U.S. Army Engineer Waterways Experiment Station, Washington, DC (1986)

  23. Slavik, T.P.: A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA. IOP Conf. Ser.: Mater. Sci. Eng. 10, 012146 (2010). https://doi.org/10.1088/1757-899X/10/1/012146

    Article  Google Scholar 

  24. Shuaib, M., Daoud, O.M.A.: Numerical analysis of RC slab under blast loads using the coupling of LBE and ALE method in LS-DYNA, fib Symposium, Cape Town (2016)

  25. Livermore Software Technology Corporation, LS-DYNA User Manual: Volume I (Version R7.1), Livermore, CA (2014)

  26. Consolazio, G.R., Chung, J.H., Gurley, K.R.: Impact simulation and full scale crash testing of a low profile concrete work zone barrier. Comput. Struct. 81, 1359–1374 (2003). https://doi.org/10.1016/S0045-7949(03)00058-0

    Article  Google Scholar 

  27. Han, Y., Liu, H.: Finite element simulation of medium-range blast loading using LS-DYNA. Shock Vib. 2015, 631493 (2015). https://doi.org/10.1155/2015/631493

    Article  Google Scholar 

  28. Alia, A., Souli, M.: High explosive simulation using multi-material formulations. Appl. Therm. Eng. 26, 1032–1042 (2006). https://doi.org/10.1016/j.applthermaleng.2005.10.018

    Article  Google Scholar 

  29. Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral and orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981). https://doi.org/10.1002/nme.1620170504

    Article  MATH  Google Scholar 

  30. Livermore Software Technology Corporation, LS-DYNA User Manual: Volume II Material Models (Version R7.1), Livermore, CA (2014)

  31. Federal Emergency Management Agency, Reference manual to mitigate potential terrorist attacks against buildings, FEMA 426, Department of Homeland Security, US (2003)

  32. Mahmadi, K., Aquelet, N., Souli, M.: New mesh relaxation technique in multi-material ALE applications. Emerg. Technol. Fluids Struct. Fluid-Struct. Interact. 1, 135–140 (2004). https://doi.org/10.1115/PVP2004-2863

    Article  Google Scholar 

  33. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluids Dyn. 24, 273–285 (1982)

    MATH  Google Scholar 

  34. Benson, D.J.: Momentum advection on a staggered mesh. J. Comput. Phys. 100, 143–162 (1992). https://doi.org/10.1016/0021-9991(92)90316-Q

    Article  MathSciNet  MATH  Google Scholar 

  35. Van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977). https://doi.org/10.1016/0021-9991(77)90095-X

    Article  MATH  Google Scholar 

  36. Corporation, Livermore Software Technology: LS-DYNA Theory Manual. Livermore, CA (2006)

  37. Schwer, L.: A brief introduction to coupling load blast enhanced with Multi-Material ALE: the best of both worlds for air blast simulation, 9th LS-DYNA Forum, Bamberg (2010)

  38. Chang, S.Y., Huang, C.L.: A new family of explicit time integration methods. IOP Conf. Ser.: Mater. Sci. Eng. 10, 012145 (2010). https://doi.org/10.1088/1757-899X/10/1/012145

    Article  Google Scholar 

  39. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967). https://doi.org/10.1147/rd.112.0215

    Article  MathSciNet  MATH  Google Scholar 

  40. Weibull, W.: Explosion of spherical charges in air: travel time, velocity of front, and duration of shock waves. Technical report X-127, Ballistic Research Laboratories, Aberdeen, MD (1950)

  41. Schwer, L.E., Netherton, M.D., Stewart, M.G.: Comparisons of University of Newcastle free air blast data with Conwep and LS-DYNA simulations. 23rd Military Aspects of Blast and Shock, Oxford (2014)

  42. Westine, P.S., Baker, W.E.: Energy solutions for predicting deformations in blast-loaded structures. Technical report, Southwest Research Institute, San Antonio, TX (1975)

  43. Chen, G., Feldman, M.: Shock reflection–diffraction phenomena and multidimensional conservation laws. Proceedings of the 12th International Conference on Hyperbolic Problems: Theory, Numerics and Applications (2009)

  44. Huang, Y., Willford, M.R., Schwer, L.E.: Validation of LS-DYNA MMALE with blast experiments. 12th International LS-DYNA Users Conference, Detroit (2012)

Download references

Acknowledgements

The authors acknowledge the technical advice and contributions of Frederik Coghe, Bruno Reymen, Peter Michiels, and Tony Tuts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Teixeira-Dias.

Additional information

Communicated by C. Needham and A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caçoilo, A., Teixeira-Dias, F., Mourão, R. et al. Blast wave propagation in survival shelters: experimental analysis and numerical modelling. Shock Waves 28, 1169–1183 (2018). https://doi.org/10.1007/s00193-018-0858-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-0858-5

Keywords

Navigation