Skip to main content

Advertisement

Log in

A comparison of methods for detonation pressure measurement

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of \(1.66 \hbox { g cm}^{-3}\) were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, p. 293. Academic Press, New York (1970)

    Chapter  Google Scholar 

  2. Rice, M.H., McQueen, R.G., Walsh, J.M.: Compression of solids by strong shock waves. Solid State Phys. 6, 1–63 (1958). doi:10.1016/S0081-1947(08)60724-9

    Article  Google Scholar 

  3. Walsh, J.M., Christian, R.H.: Equation of state of metals from shock wave measurements. Phys. Rev. 97, 1544 (1955). doi:10.1103/PhysRev.97.1544

    Article  Google Scholar 

  4. Walsh, J.M., Rice, M.H., McQueen, R.G., Yarger, F.L.: Shock-wave compressions of twenty-seven metals. Equations of state of metals. Phys. Rev. 108, 196 (1957). doi:10.1103/PhysRev.108.196

    Article  Google Scholar 

  5. Ahrens, T.J.: MateriaI strength effect in the shock compression of alumina. J. Appl. Phys. 39, 4610 (1968). doi:10.1063/1.1655810

    Article  Google Scholar 

  6. Duff, R.E., Houston, E.: Measurement of the Chapman–Jouguet pressure and reaction zone length in a detonating high explosive. J. Chem. Phys. 23(7), 1268–1273 (1955). doi:10.1063/1.1742255

    Article  Google Scholar 

  7. Goranson, R.W.: A Method for Determining Equations of State and Reaction Zones in Detonation of High Explosives, and Its Application to Pentolite, Composition B, Baratol and TNT. Report LA-487. Los Alamos, USA (1946)

  8. Deal, W.E.: Measurement of Chapman–Jouguet pressure for explosives. J. Chem. Phys. 27(1), 796–800 (1957). doi:10.1063/1.1743831

    Article  Google Scholar 

  9. Davis, W.C., Craig, B.G.: Smear camera technique for free-surface velocity measurement. Rev. Sci. Instrum. 32, 579 (1961). doi:10.1063/1.1717443

    Article  Google Scholar 

  10. Fedorov, A.V., Mikhailov, A.L., Antonyuk, L.K., Nazarov, D.V., Finyushin, S.A.: Determination of chemical reaction zone parameters, Neumann peak parameters, and the state in the Chapman–Jouguet plane in homogeneous and heterogeneous high explosives. Combust. Explos. Shock Waves (Engl. Transl.) 48(3), 302–308 (2012). doi:10.1134/S0010508212030070

    Article  Google Scholar 

  11. Bouyer, V., Doucen, M., Decaris, L.: Experimental measurements of the detonation wave profile in a TATB based explosive. EPJ Web Conf. 10, 00030 (2010). doi:10.1051/epjconf/20101000030

    Article  Google Scholar 

  12. Lorenz, K.T., Lee, E.L., Chambers, R.: A simple and rapid evaluation of explosive performance—the disc acceleration experiment. Propellants Explos. Pyrotech. 40(1), 95–108 (2015). doi:10.1002/prep.201400081

    Article  Google Scholar 

  13. Sheffield, S.A., Blomquist, D.D.: Subnanosecond measurements of detonation fronts in solid high explosives. J. Chem. Phys. 80(8), 3831–3844 (1984). doi:10.1063/1.447164

    Article  Google Scholar 

  14. Utkin, A.V., Mochalova, V.M., Logvinenko, A.A.: Effect of diethylenetriamine on the structure of detonation waves in nitromethane. Combust. Explos. Shock Waves (Engl. Transl.) 49(4), 478–483 (2013). doi:10.1134/S0010508213040114

    Article  Google Scholar 

  15. Yunoshev, A.S., Plastinin, A.V., Silvestrov, V.V.: Effect of the density of an emulsion explosive on the reaction zone width. Combust. Explos. Shock Waves (Engl. Transl.) 48(3), 319–327 (2012). doi:10.1134/S0010508212030094

    Article  Google Scholar 

  16. Gustavsen, R.L., Bartram, B.D., Sanchez, N.J.: Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry. AIP Conf. Proc. 1195, 253 (2010). doi:10.1063/1.3295117

    Google Scholar 

  17. Fedorov, A.V.: Detonation wave structure in liquid homogeneous, solid heterogeneous and agatized HE. Paper presented at the Twelfth International Symposium on Detonation, San Diego, California, USA, 11–16 Aug (2002)

  18. Cook, M.A., Keyes, R.T., Ursenbach, W.O.: Measurements of detonation pressure. J. Appl. Phys. 33(12), 3413–3421 (1962). doi:10.1063/1.1702422

    Article  Google Scholar 

  19. Held, M.: Determination of the Chapman–Jouguet pressure of a high explosive from one single test. Def. Sci. J. 37(1), 1–9 (1987). doi:10.14429/dsj.37.5886

    Article  Google Scholar 

  20. Hayes, B.: The detonation electric effect. J. Appl. Phys. 38(2), 507–511 (1967). doi:10.1063/1.1709365

    Article  Google Scholar 

  21. Green, L.G., Lee, E.L.: Detonation pressure measurements on PETN. Paper presented at the 13th International Detonation Symposium, Norfolk, Virginia, USA, 23–28 July (2006)

  22. Prinse, W.C., Esveld, L., Oostdam, R., Roojien, M., Bouma, R.: Fibre-optical techniques for measuring various properties of shock waves. Paper presented at the 23rd International Congress on High-Speed Photography and Photonics, Moscow, Russia, 20 Sept (1998). doi:10.1117/12.350497

  23. Krupka, M.: OPTIMEX—scientific report of the progress and results obtained in 2015. In: Technology Agency of Czech Republic, Hrochuv Tynec (2015) (in Czech)

  24. Krupka, M., Pachman, J., Selesovsky, J., Marsalek, R., Pospisil, M.: OPTIMEX—fiber optical system for EM performance. Paper presented at the Greener and Safer Energetic and Ballistic Systems (GSEBS), Bucharest, Romania, 22–23 May (2016)

  25. Loboiko, B.G., Lubyatinsky, S.N.: Reaction zones of detonating solid explosives. Combust. Explos. Shock Waves (Engl. Transl.) 36(6), 716–733 (2000). doi:10.1023/A:1002898505288

    Article  Google Scholar 

  26. Cowperthwaite, M., Rosenberg, J.T.: Lagrange gage studies in ideal and non-ideal explosives. Paper presented at the Seventh Symposium (International) on Detonation, Annapolis, Maryland, USA, 16–19 June (1981)

  27. Rivard, W.C., Venable, D., Fickett, W., Davis, W.C.: Flash X-ray observation of marked mass points in explosive products. Paper presented at the Fifth International Symposium on Detonation, Pasadena, California, USA (1970)

  28. Vantine, H., Chan, J., Erickson, L., Janzen, J., Weingart, R., Lee, R.: Precision stress measurements in severe shockwave environments with low-impedance manganin gauges. Rev. Sci. Instrum. 51, 116–122 (1980). doi:10.1063/1.1136038

    Article  Google Scholar 

  29. Watson, R.W.: Gauge for determining shock pressures. Rev. Sci. Instrum. 38, 978–980 (1967). doi:10.1063/1.1720946

    Article  Google Scholar 

  30. Pachman, J., Künzel, M., Němec, O., Bland, S.: Characterization of Al plate acceleration by low power photonic Doppler velocimetry (PDV). Paper presented at the 40th International Pyrotechnics Society Seminar, Colorado Springs, USA, 13–18 July (2014)

  31. Künzel, M., Matyáš, R., Vodochodský, O., Pachman, J.: Explosive properties of melt cast erythritol tetranitrate. Cent. Eur. J. Energy Mater. (2017). doi:10.22211/cejem/68471

    Google Scholar 

  32. Strand, T., Goosman, D.R., Martinez, C., Whitworth, T.L., Kuhlow, W.W.: Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77, 083108 (2006). doi:10.1063/1.2336749

    Article  Google Scholar 

  33. Strand, T., Kuhlow, B.: Resolution capabilities of the Fourier transform method for PDV. Paper presented at the Photonic Doppler Velocimetry Workshop, Livermore, California, USA, 20–21 July (2006)

  34. Sućeska, M.: Explo5 Version 6.03/2016 User’s Guide. OZM Research (2016)

  35. Brown, W.B.: Analytical representation of the excess thermodynamic equation of state for classical fluid mixtures of molecules interacting with \(\alpha \)-exponential-six pair potentials up to high densities. J. Chem. Phys. 87(1), 566–577 (1987). doi:10.1063/1.453605

    Article  Google Scholar 

  36. Craig, B.G.: Measurement of detonation-front structure in condensed-phase explosives. Paper presented at the Tenth Symposium (International) on Combustion, Cambridge, UK (1965). doi:10.1016/S0082-0784(65)80230-2

  37. Pachman, J., Künzel, M., Kubát, K., Selesovsky, J., Maršálek, R., Pospíšil, M., Kubíček, M., Prokeš, A.: OPTIMEX: Measuring of detonation front curvature with passive fiber optical system. Cent. Eur. J. Energy Mater. 13(4), 808–820 (2016). doi:10.22211/cejem/62776

    Google Scholar 

  38. Choudhury, D., Gupta, Y.M.: Shock compression and unloading response of 1050 aluminum to 70 GPa. AIP Conf. Proc. 1426, 755 (2012). doi:10.1063/1.3686388

    Article  Google Scholar 

  39. Chapman, D.J., Eakins, D.E., Williamson, D.M., Proud, W.G.: Index of refraction measurements and window corrections for PMMA under shock compression. AIP Conf. Proc. 1426, 442 (2012). doi:10.1063/1.3686313

    Article  Google Scholar 

  40. Gustavsen, R.L., Bartram, B.D., Sanchez, N.: Shock initiation measurements using multiple samples & instrumented with PDV. Paper presented at the Photonic Doppler Velocimetry Workshop, Austin, Texas, USA, 5–6 Nov (2009)

  41. Cooper, P.W.: Explosives Engineering. Wiley-WCH Inc, New York (1996)

    Google Scholar 

  42. Dolan, D.H.: Accuracy and precision in photonic Doppler velocimetry. Rev. Sci. Instrum. 81(053905), 1–7 (2010). doi:10.1063/1.3429257

    Google Scholar 

  43. Braithwaite, C.H., Pachman, J., Majzlik, J., Williamson, D.M.: Recalibration of the large scale gap-test to a stress scale. Propellants Explos. Pyrotech. 37(5), 614–620 (2012). doi:10.1002/prep.201200006

    Article  Google Scholar 

  44. Coleburn, N.L.: Chapman–Jouguet pressures of several pure and mixed explosives. NOLTR 64-58, United States Naval Ordnance Laboratory, Maryland, USA, DTIC Accession Number AD0603540 (1964)

  45. Majzlík, J., Dusík, V.: DETPAR—The Catalogue of Detonation Parameters, 1st edn. University of Pardubice, Pardubice (2002)

    Google Scholar 

Download references

Acknowledgements

Financial support for this work from the Technology Agency of the Czech Republic Project TA02010923 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Künzel.

Additional information

Communicated by A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachman, J., Künzel, M., Němec, O. et al. A comparison of methods for detonation pressure measurement. Shock Waves 28, 217–225 (2018). https://doi.org/10.1007/s00193-017-0761-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0761-5

Keywords

Navigation