Skip to main content
Log in

Ignition delay-time behind reflected shock waves of small hydrocarbons–nitrous oxide(–oxygen) mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Although nitrous oxide has been identified as an important intermediate during the combustion of many solid propellants, there is a limited amount of data concerning the high-temperature oxidation of hydrocarbons by nitrous oxide. In the present study, ignition delay-times of small hydrocarbon–N\(_{2}\)O mixtures with and without O\(_{2}\) were investigated through shock-tube experiments and chemical kinetic simulations. Experimentally, it is shown that the addition of oxygen induces a significant reduction of the activation energy of the ignition process. Simulations demonstrate that delay-times are usually satisfactorilly predicted but that the detailed reaction models used do not capture all the features of the OH* emission profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Osmont, A., Catoire, L., Gökalp, I., Yang, V.: Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust. Flame 151, 262–273 (2007)

    Article  Google Scholar 

  2. Melius, C., Piqueras, M.: Initial reaction steps in the condensed-phase decomposition of propellants. Proc. Combust. Inst. 29, 2863–2871 (2002)

    Article  Google Scholar 

  3. Toland, A., Simmie, J.: Ignition of alkyl nitrate/oxygen/argon mixtures in shock waves and comparisons with alkanes and amines. Combust. Flame 132, 556–564 (2003)

    Article  Google Scholar 

  4. Presles, H., Desbordes, D., Guirard, M., Guerraud, C.: Gaseous nitromethane and nitromethane-oxygen mixtures: a new detonation structure. Shock Waves 6, 111–114 (1996)

    Article  Google Scholar 

  5. Joubert, F., Desbordes, D., Presles, H.: Detonation cellular structure in NO\(_{2}\)/N\(_{2}\)O\(_{4}\)–fuel gaseous mixtures. Combust. Flame 152, 482–495 (2008)

    Article  Google Scholar 

  6. Joubert, F.: Etude de la détonation de mélanges réactifs gazeux constitués d’un combustible (H\(_{2}\), CH\(_{4}\), C\(_{2}\)H\(_{6}\), C\(_{2}\)H\(_{4}\)) et d’un oxyde d’azote, N\(_{2}\)O et NO\(_{2}\)/N\(_{2}\)O\(_{4}\). Ph.D. thesis, Université de Poitiers (2001)

  7. Parker, W., Wolfhard, H.: Some characteristics of flames supported by NO and NO\(_{2}\). Symposium (Int.) Combust. 4, 420–428 (1953)

  8. Gray, P., Yoffe, A.D.: The reactivity and structure of nitrogen dioxide. Chem. Rev. 55, 1069–1154 (1955)

    Article  Google Scholar 

  9. Miller, E., Setzer, H.: Burning structure and stability of n-butane-nitrogen dioxide flames in air. Symposium (Int.) Combust. 6, 164–172 (1957)

  10. Allen, M., Yetter, R., Dryer, F.: The decomposition of nitrous oxide at 1.5 \(<\) P \(<\) 10.5 atm and 1103 \(<\) T \(<\) 1173 K. Int. J. Chem. Kinet. 27, 883–909 (1995)

  11. Javoy, S., Mével, R., Paillard, C.E.: A study of N\(_{2}\)O decomposition rate constant at high temperature: application to the reduction of nitrous oxide by hydrogen. Int. J. Chem. Kinet. 41, 357–375 (2009)

    Article  Google Scholar 

  12. Mével, R.: Etude de mécanismes cinétiques et des propriétés explosives des mélanges hydrogène-protoxyde d’azote et silane-protoxyde d’azote. Application à la sécurité industrielle. Ph.D. thesis, Université d’Orléans (2009)

  13. Konnov, A.: Detailed reaction mechanism for small hydrocarbons combustion. Release 0.5 (2000)

  14. Le Cong, T.: Etude expérimentale et modélisation de la cinétique de combustion de combustibles gazeux : Méthane, gaz naturel et mélanges contenant de l’hydrogène, du monoxyde de carbone, du dioxyde de carbone et de l’eau. Ph.D. thesis, Université d’Orléans (2007)

  15. Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V. Qin, Z.: GRI-mech release 3.0

  16. Mével, R., Javoy, S., Dupré, G.: A chemical kinetic study of the oxidation of silane by nitrous oxide, nitric oxide and oxygen. Proc. Combust. Inst. 33, 485–492 (2011)

    Article  Google Scholar 

  17. Mével, R., Javoy, S., Lafosse, F., Chaumeix, N., Dupré, G., Paillard, C.E.: Hydrogen-nitrous oxide delay time: shock tube experimental study and kinetic modelling. Proc. Combust. Inst. 32, 359–366 (2009)

    Article  Google Scholar 

  18. Javoy, S., Mével, R., Dupré, G.: Oxygen atom kinetics in silane–hydrogen–nitrous oxide mixtures behind reflected shock waves. Chem. Phys. Lett. 500, 223–228 (2010)

  19. Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156, 588–607 (2009)

    Article  Google Scholar 

  20. Hong, Z., Davidson, D., Hanson, R.: An improved H\(_{2}\)/O\(_{2}\) mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158, 633–644 (2011)

    Article  Google Scholar 

  21. Hall, J., Rickard, M., Petersen, E.: Comparison of characteristic time diagnostics for ignition and oxidation of fuel/oxidizer mixtures behind reflected shock waves. Combust. Sci. Technol. 177, 455–483 (2005)

    Article  Google Scholar 

  22. Hall, J., Petersen, E.: An optimized kinetics model for OH chemiluminescence at high temperature and atmospheric pressures. Int. J. Chem. Kinet. 38, 714–724 (2006)

    Article  Google Scholar 

  23. Mével, R., Lafosse, F., Catoire, L., Chaumeix, N., Dupré, G., Paillard, C.E.: Induction delay times and detonation cell size prediction of hydrogen–nitrous oxide–argon mixtures. Combust. Sci. Technol. 180, 1858–1875 (2008)

    Article  Google Scholar 

  24. Hall, J., Reehal, S., Petersen, E.: Kinetics of the OH chemiluminescence in the presence of silicon. Chem. Phys. Lett. 425, 229–233 (2006)

    Article  Google Scholar 

  25. Pichon, S.: Etude cinétique de systèmes hypergoliques et propergoliques à base d’éthanol et de peroxide d’hydrogène. Ph.D. thesis, Université d’Orléans (2005)

  26. Mevel, R., Pichon, S., Catoire, L., Chaumeix, N., Paillard, C.E., Shepherd, J.E.: Dynamics of excited hydroxyl radicals in hydrogen-based mixtures behind reflected shock waves. Proc. Combust. Inst. 34, 677–684 (2013)

    Article  Google Scholar 

  27. Lutz, A., Kee, R., Miller, A.: SENKIN : a fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Technical report Sand87-8248, Sandia International Laboratories (1992)

  28. Kee, R., Grcar, J., Smooke, M., Miller, J.: A fortran program for modelling steady laminar one-dimensional premixed flames. Technical report SAND85-8240, Sandia International Laboratories (1993)

  29. Chaos, M., Dryer, F.: Chemical-kinetic modeling of ignition delay: considerations in interpreting shock tube data. Int. J. Chem. Kinet. 42, 143–150 (2010)

    Article  Google Scholar 

  30. Rotavera, B., Dagaut, P., Petersen, E.: Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories. Combust. Flame 161, 1146–1163 (2014)

    Article  Google Scholar 

  31. Damazo, J., Ziegler, J., Karnesky, J., Shepherd, J.E.: Shock wave-boundary layer interaction from reflecting detonations. In: Proceedings of the 28th International Symposium on Shock Waves, vol 2, pp. 751–756 (2012)

  32. Mathieu, O., Levacque, A., Petersen, E.: Effects of N\(_2\)O addition on the ignition of H\(_2\)–O\(_2\) mixtures: experimental and detailed kinetic modeling study. Int. J. Hydrogen Energy 37, 15393–15405 (2012)

    Article  Google Scholar 

  33. Mével, R., Javoy, S., Coudoro, K., Dupré, G., Paillard, C.E.: Assessment of H\(_2\)–CH\(_4\)–air mixtures oxidation kinetic models used in combustion. Int. J. Hydrogen Energy 37, 698–714 (2012)

    Article  Google Scholar 

  34. Glassman, I.: Combustion. Academic Press Inc., London (1987)

    Google Scholar 

  35. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling: supplement II. J. Phys. Chem. Ref. Data 34, 757–1397 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was performed in the Explosion Dynamics Laboratory of the California Institute of Technology. The authors acknowledge the help of Dr P. A. Boettcher, Dr J. Damazo, and A. Demenay for setting up the shock tube. The authors thank Professor G. Blanquart, Caltech, for providing his reaction mechanism and Doctor D. Davidenko for his help with the VTIM code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mével.

Additional information

Communicated by G. Ciccarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mével, R., Shepherd, J.E. Ignition delay-time behind reflected shock waves of small hydrocarbons–nitrous oxide(–oxygen) mixtures. Shock Waves 25, 217–229 (2015). https://doi.org/10.1007/s00193-014-0509-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-014-0509-4

Keywords

Navigation