Skip to main content
Log in

Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations

  • Technical Note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this paper, the critical energies required for direct initiation of spherical detonations in four gaseous fuels (C2H2, C2H4, C3H8 and H2)–oxygen mixtures at different initial pressures, equivalence ratios and with different amounts of argon dilution are reported. Using these data, a scaling analysis is performed based on two main parameters of the problem: the explosion length R o that characterizes the blast wave and a characteristic chemical length that characterizes the detonation. For all the undiluted mixtures considered in this study, it is found that the relationship is closely given by \({R_{\rm o} \approx 26 \lambda}\) , where λ is the characteristic detonation cell size of the explosive mixture. While for C2H2–2.5O2 mixtures highly diluted with argon, in which cellular instabilities are shown to play a minor role on the detonation propagation, the proportionality factor increases to 37.3, 47 and 54.8 for 50, 65 and 70% argon dilution, respectively. Using the ZND induction length Δ I as the characteristic chemical length scale for argon diluted or ‘stable’ mixtures, the explosion length is also found to scale adequately with \({R_{\rm o} \approx 2320 \Delta_I}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Matsui H., Lee J.H.S.: On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. Proc. Combust. Inst. 17, 1269–1280 (1978)

    Google Scholar 

  2. Lee J.H.S.: Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16, 311–336 (1984)

    Article  Google Scholar 

  3. Lee J.H.S., Higgins A.J.: Comments on criteria for direct initiation of detonation. Phil. Trans. R. Soc. Lond. A 357, 3503–3521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vasil’ev A.A., Mitrofanov V.V., Topchiyan M.E.: Detonation waves in gases. Combust. Explos. Shock Waves 23(5), 605–623 (1987)

    Article  Google Scholar 

  5. Zel’dovich Y.B., Kogarko S.M., Simonov N.N.: An experimental investigation of spherical detonation in gases. Sov. Phys. Tech. Phys. 1, 1689–1713 (1957)

    Google Scholar 

  6. Lee J.H.: Initiation of gaseous detonation. Annu. Rev. Phys. Chem 28, 75–104 (1977)

    Article  Google Scholar 

  7. Murray S.B., Lee J.H.S.: The influence of yielding confinement on large-scale ethylene-air detonations. Prog. Astro. Aero. 94, 80–103 (1984)

    Google Scholar 

  8. Radulescu M.I., Higgins A.J., Lee J.H.S., Murray S.B.: On the explosion length invariance in direct initiation of detonation. Proc. Combust. Inst. 28, 637–644 (2000)

    Article  Google Scholar 

  9. Knystautas R., Lee J.H.S.: On the effective energy for direct initiation of detonations. Combust. Flame 27, 221–228 (1976)

    Article  Google Scholar 

  10. Kamenskihs V., Ng H.D., Lee J.H.S.: Measurement of critical energy for direct initiation of spherical detonations in high-pressure H2/O2 mixtures. Combust. Flame 157(9), 1795–1799 (2010)

    Article  Google Scholar 

  11. Zhang B., Kamenskihs V., Ng H.D., Lee J.H.S.: Direct blast initiation of spherical gaseous detonation in highly argon diluted mixtures. Proc. Combust. Inst. 33(2), 2265–2271 (2010)

    Article  Google Scholar 

  12. Zhang B., Ng H.D., Mével R., Lee J.H.S.: Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures. Int. J. Hydrogen Energy 36, 5707–5716 (2011)

    Article  Google Scholar 

  13. Zhang, B., Ng, H.D., Lee, J.H.S.: Measurement of effective blast energy for direct initiation of spherical gaseous detonations from high-voltage spark discharge. Shock Waves, accepted for publication (2011)

  14. Radulescu M.I., Lee J.H.S.: The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131(1–2), 29–46 (2002)

    Article  Google Scholar 

  15. Radulescu M.I., Ng H.D., Varatharajan B., Lee J.H.S.: The effect of argon dilution on the stability of acetylene-oxygen detonations. Proc. Combust. Inst. 29, 2825–2831 (2002)

    Article  Google Scholar 

  16. Ng H.D., Radulescu M.I., Higgins A.J., Nikiforakis N., Lee J.H.S.: Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theory Model. 9, 385–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaneshige, M., Shepherd, J.E.: Detonation database, GALCIT Technical Report FM97-8. http://www.galcit.caltech.edu/detn_db/html/ (1997)

  18. Radulescu, M.I.: The Propagation and Failure Mechanism of Gaseous Detonations: Experiments in Porous-Walled Tubes. PhD thesis, McGill University, Canada (2003)

  19. Lee J.H.S.: On the critical tube diameter. In: Bowen, J. (ed.) Dynamics of Exothermicity, pp. 321–335. Gordon and Breach, Amsterdam (1996)

    Google Scholar 

  20. Kee, R.J., Rupley, F.M., Miller, J.A.: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories report SAND89-8009 (1989)

  21. Konnov, A.A.: Detailed reaction mechanism for small hydrocarbons combustion. Release 0.4. http://homepages.vub.ac.be/~akonnov/ (1998)

  22. Schultz, E., Shepherd, J.E.: Validation of detailed reaction mechanisms for detonation simulation. GALCIT Technical Report FM99-5 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Ng.

Additional information

Communicated by N. N. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Ng, H.D. & Lee, J.H.S. Measurement and scaling analysis of critical energy for direct initiation of gaseous detonations. Shock Waves 22, 275–279 (2012). https://doi.org/10.1007/s00193-011-0351-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0351-x

Keywords

Navigation