Skip to main content
Log in

Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The impending scarcity of fossil fuel in the future requires continued development in hydrocarbon combustion research. Biofuels offer a promising alternative to traditional fossil fuel-based combustion. To optimize engine design for biofuels, adequate combustion characteristics for new fuels have to be known. In this study, a new high pressure stainless steel shock tube for measuring ignition delay times is presented. When compared with other shock tubes for investigating ignition delays, the new tube provides superior maximum working pressures and geometric properties. Shock tube performance is determined by reference experiments with air as driven gas. These experiments allow to determine the available test time and the influence of shock attenuation. Owing to the large inner diameter of the shock tube, shock attenuation is <1% as it is typical for low pressure shock tubes. However, contrast to typical low pressure shock tubes, non-diluted fuel–air mixtures at high pressures can be investigated in the new shock tube due to the high allowable working pressure. First experiments concerning the ignition delay time have been performed with methane and n-heptane. The results of these experiments show a good agreement to literature data. As a first biofuel ethanol has been investigated at elevated pressures up to 40 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petersen E.L., Hanson R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001)

    Article  Google Scholar 

  2. Davidson D.F., Hanson R.K.: Interpreting shock tube ignition data. Int. J. Chem. Kinet. 36, 510–523 (2004)

    Article  Google Scholar 

  3. Herzler J., Jerig L., Roth P.: Shock-tube study of the ignition of propane at intermediate temperatures and high pressures. Combust. Sci. Tech. 176, 1627–1637 (2004)

    Article  Google Scholar 

  4. Petersen E.L., Rickard M.J.A., Crofton M.W., Abbey E.D., Traum M.J., Kalitan D.M.: A facility for gas- and condensed-phase measurements behind shock waves, Meas. Sci. Tech. 16, 1716–1729 (2005)

    Google Scholar 

  5. Black G., Curran H.J., Pichon S., Simmie J.M., Zhukov V.: Bio-butanol: combustion properties and detailed chemical kinetic model. Combust. Flame 157(2), 363–373 (2010)

    Article  Google Scholar 

  6. Pang G.A., Davidson D.F., Hanson R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen oxygen argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009)

    Article  Google Scholar 

  7. Esser, B.: Die Zustandsgrößen im Stoßwellenkanal als Ergebnisse eines exakten Riemannlösers. Dissertation, RWTH Aachen University (1991)

  8. Kee R.J., Rupley F.M., Miller J.A., Coltrin M.E., Grcar J.F., Meeks J.F., Moffat H.K., Lutz A.E., Dixon-Lewis G., Smooke M.D., Warnatz J., Evans G.H., Larson R.S., Mitchell R.E., Petzold L.R., Reynolds W.C., Carcotsios M., Stewart W.E., Glarborg P., Wang C., Adigun O.: CHEMKIN Pro, Release 15082. Reaction Design. Inc., San Diego (2009)

    Google Scholar 

  9. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, Jr. W.C., Lissianski, Vitali V., Qin, Z.: http://www.me.berkeley.edu/gri_mech/

  10. Grillo A., Slack M.W.: Shock tube study of ignition delay times in methane–oxygen–nitrogen–argon mixtures. Combust Flame 27, 377–381 (1976)

    Article  Google Scholar 

  11. Lifshitz A., Scheller K., Burcat A., Skinner G.B.: Shock tube investigation of ignition in methane–oxygen–argon mixtures. Combust. Flame 16, 311–321 (1971)

    Article  Google Scholar 

  12. Petersen E.L., Davidson D.F., Hanson R.K.: Ignition delay times of ram accelerator CH4/O2/diluent mixtures. J. Propul. Power 15, 82–91 (1999)

    Article  Google Scholar 

  13. Huang J., Hill P.G., Bushe W.K., Munshi S.R.: Shock-tube study of methane ignition under engine-relevant conditions: experiments and modelling. Combust. Flame 136, 25–42 (2004)

    Article  Google Scholar 

  14. Petersen E.L., Davidson D.F., Hanson R.K.: Kinetics modeling of shock-induced ignition in low-dilution CH4/O2 mixtures at high pressures and intermediate temperatures. Combust. Flame 117, 272–290 (1999)

    Article  Google Scholar 

  15. Ciezki H.K., Adomeit G.: Shock-tube investigation of self-ignition of n-heptane–air mixtures under engine relevant conditions. Combust. Flame 93(4), 421–433 (1993)

    Article  Google Scholar 

  16. Fieweger K., Blumenthal R., Adomeit G.: Gas dynamic features of self ignition of non diluted fuel/air mixtures at high pressure. Proc. Combust. Inst. 25, 1579–1585 (1994)

    Google Scholar 

  17. Fieweger K., Blumenthal R., Adomeit G.: Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure. Combust. Flame 109, 599–619 (1997)

    Article  Google Scholar 

  18. Fieweger, K.: Selbstzündung von Kohlenwasserstoff/Luft-Gemischen unter motorischen Randbedingungen. Dissertation, RWTH Aachen University (1997)

  19. Gauthier B.M., Davidson D.F., Hanson R.K.: Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust. Flame 139, 300–311 (2004)

    Article  Google Scholar 

  20. Heufer, K.A., Olivier, H.: Determination of ignition delay times of different hydro-carbons in a new high pressure shock tube. In: Paper 30202, 27th international symposium on shock waves, St. Petersburg, Russia (2009)

  21. Dunphy M.P., Simmie J.M.: High-temperature oxidation of ethanol. J. Chem. Soc. Farad. Trans. 87, 1691–1696 (1991)

    Article  Google Scholar 

  22. Curran H.J., Dunphy M.P, Simmie J.M., Westbrook C.K., Pitz W.J.: Shock tube ignition of ethanol, iso-butene and MTBE: experiments and modelling. Proc. Combust. Inst. 24, 769–776 (1992)

    Google Scholar 

  23. Cancino, L.R., Fikri, M., Oliveira, A.M.M., Schulz, C.: Thermal oxidation of ethanol: experimental and numerical analysis of ignition chemistry of ethanol–air mixtures in shock-heated gases. In: Paper 30074, 27th international symposium on shock waves, St. Petersburg, Russia (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Heufer.

Additional information

Communicated by H. Kleine.

“This paper was based on work that was presented at the 27th International Symposium on Shock Waves, St. Petersburg, Russia, July 19–24, 2009”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heufer, K.A., Olivier, H. Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube. Shock Waves 20, 307–316 (2010). https://doi.org/10.1007/s00193-010-0262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-010-0262-2

Keywords

Navigation