Skip to main content
Log in

Shock and wave dynamics in cavitating compressible liquid flows in injection nozzles

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Due to the exceptional high inlet pressures up to 2,000 bar flow dynamics and efficiency of modern injection systems are controlled by high frequency wave dynamics of the compressible liquid flow. Corresponding to alternating shock and expansion waves the liquid fluid evaporates and recondenses instantaneously. Here we present CFD simulations of the time accurate evolution of cavitating flows in 2-D plane and in six-hole injection nozzles with focus on the wave dynamics just after initialisation of the flow and within the time scale Δt ≤ 10−4 s of pilot and multi-point injection. Due to shock reflections at the bottom of the sack hole the instantaneous maximum pressure increases more than three times higher as compared with the prescribed pressure at the nozzle inlet. For instance, in case of an inlet pressure of 600 bar the maximum pressure in the sack and therefore ahead of the nozzle bore holes reaches about 2,100 bar. It is quite reasonable that this amplification of the pressure affects the evolution of the convective flow and therefore the mass flow through the nozzle bore holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alajbegovic A., Meister G., Greif D., Basara B.: Three phase cavitating flows in high-pressure swirl injectors. Exp. Thermal Fluid Sci. 26, 667–681 (2002)

    Article  Google Scholar 

  2. Brennen C.E.: Fission of collapsing cavitating bubbles. J. Fluid Mech. 472, 153–166 (2002)

    Article  MATH  Google Scholar 

  3. Delale C.F.: Thermal damping in cavitating nozzle flows. ASME J. Fluids Eng. 24, 969–976 (2002)

    Article  Google Scholar 

  4. Preston A.T., Colonius T., Brennen C.E.: A reduced-order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19, 123302 (2007)

    Article  Google Scholar 

  5. Delale C.F., Schnerr G.H., Sauer J.: Quasi-one-dimensional steady-state cavitating nozzle flows. J. Fluid Mech. 427, 167–204 (2001)

    Article  MATH  Google Scholar 

  6. Schmidt, S.J., Sezal, I.H., Schnerr, G.H.: Compressible simulation of high-speed hydrodynamics with phase change. In: Wesseling, P., Onate, E., Periaux, J. (eds.) Proceedings ECCOMAS CFD 2006—European Conference on Computational Fluid Dynamics, CD-ROM Publication, The Netherlands, September 5–8 2006

  7. Berg A., Iben U., Meister A., Schmidt J.: Modeling and simulation of cavitation in hydraulic pipelines based on the thermodynamic properties of liquid and steam. Shock Waves 14, 111–121 (2005)

    Article  Google Scholar 

  8. Hoeijmakers, H.W.M., Janssens, M.E., Kwan, W.: Numerical simulation of sheet cavitation. In: Michel J.M., Kato, H. (eds.) Proceedings 3rd International Symposium on Cavitation, Grenoble, April 7–10, pp. 257–262 (1998)

  9. Schmidt, D.P., Rutland, C.J., Corradini, M.L., Roosen, P., Genge, O.: Cavitation in two-dimensional asymmetric nozzles. SAE pap. 1999-01-0518 (1999)

  10. Iben U., Wrona F., Munz C.-D., Beck M.: Cavitation in hydraulic tools based on thermodynamic properties of liquid and gas. J. Fluids Eng. 124, 1011–1017 (2002)

    Article  Google Scholar 

  11. Schnerr G.H., Sezal I.H., Schmidt S.J.: Numerical investigation of 3-D cloud cavitation with special emphasis on collapse induced shock dynamics. Phys. Fluids 20, 040703 (2008)

    Article  Google Scholar 

  12. Franc J.-P., Michel J.-M.: Fundamentals of Cavitation. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  13. Oldenbourg R.: Properties of Water and Steam in SI Units. Springer, Berlin (1999)

    Google Scholar 

  14. Saurel R., Cocchi C.P., Butler P.B.: Numerical study of cavitation in the wake of a hypervelocity profile. J. Propul. Power. 15, 513–522 (1999)

    Article  Google Scholar 

  15. IAPWS. Inernational association for the properties of water and steam

  16. Toro E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    MATH  Google Scholar 

  17. Guillard H., Viozat C.: On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28, 63–86 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Munz C.-D., Roller S., Klein R., Geratz K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32, 173–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meister A.: Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60, 256–271 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schmidt, S.J., Sezal, I.H., Schnerr, G.H., Thalhamer, M.: Riemann techniques for the simulation of compressible liquid flows with phase-transition at all Mach numbers—shock and wave dynamics in cavitating 3-D micro and macro systems. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. AIAA paper 2008-1238 (2008)

  21. Shu, C.W.: Essentailly non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report no. 97–65 (1997)

  22. LeVeque R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  23. Rudy D.H., Strickwerda J.D.: A non-reflecting outflow boundary condition for subsonic Navier–Stokes calculations. J. Comput. Phys. 36, 55–70 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schnerr, G.H., Schmidt, S.J., Sezal, I.H., Thalhamer, M.: Shock and wave dynamics of compressible liquid flows with special emphasis on unsteady load on hydrofoils and on cavitation in injection nozzles. Invited Lecture. In: Proceedings CAV2006—Sixth International Symposium on Cavitation, CD-ROM publication, The Netherlands, September 11–15 2006

  25. Yuan W., Schnerr G.H.: Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation. J. Fluids Eng. 125, 963–969 (2003)

    Article  Google Scholar 

  26. Zierep J.: Theoretische Gasdynamik. G. Braun, Karlsruhe (1991)

    Google Scholar 

  27. Busch, R.: Untersuchung von Kavitationsphänomenen in Dieseleinspritzdüsen. PhD Thesis, Universität Hannover, Hannover (2001)

  28. Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., Schneider, T.: Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles. SAE Paper 950290, pp. 645–657 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Sezal.

Additional information

Communicated by K. Hannemann.

The paper is based on work presented by the first author at the 26th International Shock Waves Symposium, Göttingen, Germany, July 15–20, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sezal, I.H., Schmidt, S.J., Schnerr, G.H. et al. Shock and wave dynamics in cavitating compressible liquid flows in injection nozzles. Shock Waves 19, 49–58 (2009). https://doi.org/10.1007/s00193-008-0185-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0185-3

Keywords

PACS

Navigation