Skip to main content
Log in

Shock unsteadiness in a thrust optimized parabolic nozzle

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up \({(\delta P_{0} /\delta t > 0)}\) and shut down \({(\delta P_{0}/\delta t < 0)}\) sequences. The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure (rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G(f):

power spectral density

f :

sampling frequency, Hz

P 0 :

stagnation chamber pressure, bar

P a :

ambient pressure, bar

P w :

local mean wall pressure, bar

P pl :

plateau pressure after separation, bar

r t :

radius of nozzle throat, mm

X :

co-ordinate along nozzle axis, mm

X sep :

point of physical separation, mm

X inc :

point of incipient separation, mm

X exit :

X-location of nozzle exit, mm

\({\in}\) :

area ratio of the nozzle

\({\sigma_{\rm pw}}\) :

rms of the local wall pressure

\({(\sigma_{w}/P_{w})_{\max }}\) :

non-dimensionalized maximum value of rms pressure fluctuation

θ w_exit :

nozzle exit wall angle

θ w :

nozzle wall angle

C O :

Overexpansion shock

C R :

Reflected shock

FSS:

Free shock separation

NPR:

Nozzle pressure ratio, P 0 / P a

pRSS:

Partially restricted shock separation

qRSS:

Quasi-restricted shock separation

RSS:

Restricted shock separation

Tq:

Triple point

TOP:

Thrust optimized parabolic

References

  1. Rao, G.V.R.: Exhaust Nozzle Contour of Optimum Thrust. Jet Propuls. 28(6), (1958)

  2. Foster C., Summerfield M., Swan W.: Flow separation in overexpanded supersonic exhaust nozzles. Jet Propuls. 24(9), 319–321 (1954)

    Google Scholar 

  3. Nave, L.H., Coffey, G.A.: Sea level side-loads in high area-ratio rocket engines. AIAA Paper 73-1284

  4. Frey, M., Stark, R., Ciezki, H.K., Quessard, F., Kwan, W.: Subscale nozzle testing at the P6.2 test stand. AIAA 2000-3777

  5. Frey, M., Hagemann, G.: Flow separation and side-loads in rocket nozzles. AIAA-99-2815

  6. Frey M., Hagemann G.: Restricted shock separation in rocket nozzles. J. Propuls. Power 16(3), 478–484 (2000). doi:10.2514/2.5593

    Article  Google Scholar 

  7. Oestlund J., Damgaard T., Frey M.: Side-load phenomena in highly overexpanded rocket nozzles. J. Propuls. Power 20(4), 695–704 (2004). doi:10.2514/1.3059

    Article  Google Scholar 

  8. Verma, S.B., Stark, R., Haidn, O.: Relation between shock unsteadiness and the origin of side-loads in a thrust optimized parabolic rocket nozzle. Aerosp. Sci. Technol. J. 10(6) (2006)

  9. Terhardt, M., Hagemann, G., Frey, M.: Flow separation and side-load behavior in the vulcain engine. AIAA 99-2762

  10. Hagemann G., Frey M., Koeschel W.: Appearance of restricted shock separation in rocket nozzles. J. Propuls. Power 18(3), 577–584 (2002). doi:10.2514/2.5971

    Article  Google Scholar 

  11. Onofri, M., Nasuti, F.: The physical origins of side-loads in rocket nozzles. AIAA 99-2587

  12. Reijasse, Ph., Morzenski, L., Naudin, P., Geneau, F.: Fluctuating side-load measurements in overexpanded sub-scale rocket nozzles. AIAA 2001-3557

  13. Morinigo, J.A., Salva, J.J.: Numerical investigation of the separation Modes, transition and hysteresis in the sub-scale J2S rocket engine nozzle. In: 4th International Conference on Launcher Technology, 3–6 December 2002, Liege, Belgium

  14. Alziary de Roquefort, T.: Unsteadiness and side-loads in overexpanded supersonic nozzles. In: 4th European Symposium of Aerothermodynamics for Space Vehicles, ESA SP-487 (2002)

  15. Watanabe, Y., Sakazume, N., Tsuboi, M.: LE-7A Engine nozzle problems during the transient operations. AIAA 2002-3841

  16. Watanabe, Y., Sakazume, N., Tsuboi, M.: LE-7A engine separation phenomenon differences of the two nozzle configurations. AIAA 2003-4763

  17. Settles G.S., Fitzpatrick T.J., Bogdonoff S.M.: Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 17, 579–585 (1979). doi:10.2514/3.61180

    Article  Google Scholar 

  18. Verma S.B.: Experimental study of flow unsteadiness in a mach 9 compression ramp interaction using a laser schlieren system. Meas. Sci. Technol. J. 14, 989–997 (2003)

    Article  Google Scholar 

  19. Dolling D.S., Murphy M.T.: Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21(12), 1628–1634 (1983). doi:10.2514/3.60163

    Article  Google Scholar 

  20. Kistler A.L.: Fluctuating wall pressure under a separated supersonic flow. J. Acoust. Soc. Am. 36(3), 543–550 (1964). doi:10.1121/1.1918998

    Article  Google Scholar 

  21. Dolling, D.S., Narlo II, N.C.: Driving mechanism of unsteady separation shock motion in hypersonic interactive flow. AGARD-CP-428, Aerodynamics of Hypersonic Lifting Vehicles, 7–1 to 7–12 (1987)

  22. Muck K.C., Andreopoulos J., Dussauge J.P.: Unsteady nature of shock-wave/turbulent boundary-layer interaction. AIAA J. 26(2), 179–187 (1988). doi:10.2514/3.9870

    Article  Google Scholar 

  23. Muck, K.C., Dussauge, J.P., Bogdonoff, S.M.: Structure of the wall pressure fluctuations in a shock-induced separated turbulent flow. AIAA 85-0179

  24. Poggie, J., Smits, A.J., Glezer, A.: The dynamics and control of fluctuating pressure loads in the reattachment. AIAA Paper 92-0178

  25. Verma, S.B., Haidn, O.: Study on restricted shock separation phenomena in rocket nozzles. AIAA 2006-1431

  26. Smits, A.J., Dussauge, J.P.: Turbulent shear layers in supersonic flow. AIP Press (1996)

  27. Maull D.J.: Hypersonic Flow over Axially Symmetric Spiked Bodies. J. Fluid Mech. 8, 584–592 (1969). doi:10.1017/S0022112060000815

    Article  MathSciNet  Google Scholar 

  28. Charwat A.F., Dewey C.F., Roos J.N., Hitz J.A.: Investigation of separated flows. Part II. flow in cavity and heat transfer. J. Aeronaut. Sci. 28(7), 513–527 (1961)

    MATH  Google Scholar 

  29. Nguyen, A.T., Deniau, H., Girard, S., Alizary de Roquefort, T.: Wall pressure fluctuations in an overexpanded rocket nozzle. AIAA 2002-4001

  30. Deck, S., Nguyen, A.T.: Unsteady side-loads in a thrust optimized contour nozzle at hysteresis regime. AIAA Journal 42(9), 1878–1888

  31. Verma, S.B., Ciezki, H.K.: Unsteady nature of flow separation inside a thrust optimized parabolic nozzle. AIAA Paper AIAA-2003-1139

  32. Reijasse, P., Corbel, B., Soulevant, D.: Unsteadiness and asymmetry of shock induced separation in a planar two-dimensional nozzle: A flow description. AIAA 99-3694

  33. Dumnov, D.: Unsteady side-load acting on the nozzle with developed separation zone. AIAA 96-3220

  34. Kwan, W., Stark, R.: Flow Separation phenomena in subscale rocket nozzles. AIAA-2002-4229

  35. Garg S., Settles G.S.: Unsteady pressure loads generated by swept-shock- wave/boundary-layer interactions. AIAA J. 34(6), 1174–1181 (1996). doi:10.2514/3.13209

    Article  Google Scholar 

  36. Dolling, D.S., Bogdonoff, S.M.: An experimental investigation of the unsteady behavior of blunt fin induced shock wave turbulent boundary-layer interaction. AIAA 81-1287

  37. Frey, M., Hagemann, G.: Status of flow separation prediction in rocket nozzles. AIAA Paper No-98-3619

  38. Lawerence R.A., Weynand E.E.: Factors affecting flow separation in contoured supersonic nozzles. AIAA J. 6(6), 1159–1160 (1968). doi:10.2514/3.4693

    Article  Google Scholar 

  39. Verma, S.B., Haidn, O.: Goertler vortex formation during the shut down sequence inside a thrust optimized parabolic (TOP) rocket nozzle. AIAA 2005-518

  40. Ginoux, J.J.: Streamwise vortices in laminar flow. AGARDograph 97(Part I) (1965)

  41. Tani I.: Production of longitudinal vortices in the boundary layer along a concave wall. J. Geophys. Res. 67, 3075–3080 (1962). doi:10.1029/JZ067i008p03075

    Article  Google Scholar 

  42. Andreopoulos J., Muck K.C.: Some new aspects of the shock wave boundary-layer interaction in compression ramp flows. J. Fluid Mech. 180, 405–428 (1987). doi:10.1017/S0022112087001873

    Article  Google Scholar 

  43. Stark, R., Kwan, W., Quessard, F., Hagemann, G., Terhardt, M.: Rocket Nozzle Cold-Gas Test Campaigns for Plume Investigations. In: 4th European Symposium on Aerothermodynamics for Space Vehicles, Capua, Italy, October 15–18 (2001)

  44. Gross, A., Haidn, O., Stark, R., Zeiss, W., Weber, C., Weiland, C.: Experimental and numerical investigation of heat loads in separated nozzle flow. AIAA 2001-3682

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Verma.

Additional information

Communicated by A. Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S.B. Shock unsteadiness in a thrust optimized parabolic nozzle. Shock Waves 19, 193–212 (2009). https://doi.org/10.1007/s00193-008-0180-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0180-8

Keywords

PACS

Navigation