Skip to main content
Log in

The effect of porosity on shock interaction with a rigid, porous barrier

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This work investigates the pressure amplification experienced behind a rigid, porous barrier that is exposed to a planar shock. Numerical simulations are performed in two dimensions using the full Navier–Stokes equations for a M = 1.3 incoming shock wave. An array of cylinders is positioned at some distance from a solid wall and the shock wave is allowed to propagate past the barrier and reflect off the wall. Pressure at the wall is recorded and the flowfield is examined using numerical schlieren images. This work is intended to provide insight into the interaction of a shock wave with a cloth barrier shielding a solid boundary, and therefore the Reynolds number is small (i.e., Re = 500 to 2000). Additionally, the effect of porosity of the barrier is examined. While the pressure plots display no distinct trend based on Reynolds number, the porosity has a marked effect on the flowfield structure and endwall pressure, with the pressure increasing as porosity decreases until a maximum value is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aradag, S., Knight, D.: Simulation of supersonic flow over a cavity. In: AIAA 43rd Aerospace Sciences Meeting, Reno, Nevada. AIAA paper 2005-0848 (2005)

  2. Ball G.J. and East R.A. (1999). Shock and blast attenuation by aqueous foam barriers: influences of barrier geometry. Shock Waves 9: 37–47

    Article  MATH  ADS  Google Scholar 

  3. Britan A., Karpov A.V., Vasilev E.I., Igra O., Ben-Dor G. and Shapiro E. (2004). Experimental and numerical study of shock wave interaction with perforated plates. J. Fluids Eng. 126: 399–409

    Article  Google Scholar 

  4. Courant R. and Friedrichs K.O. (1985). Supersonic Flow and Shock Waves. Springer, Berlin

    Google Scholar 

  5. Aerosoft Inc. General Aerodynamic Simulation Program User Manual (2004). Also available online at http://www.aerosft.com

  6. www.gridpro.com

  7. Gibson P.W. (1995). Amplification of air shock waves by textile materials. J. Textile Inst. 86: 119–128

    Google Scholar 

  8. Hattingh T.S. and Skews B.W. (2001). Experimental investigation of the interaction of shock waves with textiles. Shock Waves 11: 115–123

    Article  ADS  Google Scholar 

  9. Igra O., Wu X., Falcovitz J., Meguro T., Takayama K. and Heilig W. (2001). Experimental and theoretical study of shock wave propagation through double-bend ducts. J. Fluid Mech. 437: 25–282

    Article  Google Scholar 

  10. Igra O., Wu X., Hu G.Q. and Falcovitz J. (2002). Shock wave propagation into a dust-gas suspension inside a double-bend conduit. J. Fluids Eng. 124: 483–491

    Article  Google Scholar 

  11. Kitagawa, K., Yokoyama, M., Yasuhara, M.: Attenuation of shock wave by porous materials. In: Proceedings of 24th International Symposium on Shock Waves, Beijing, China #1961 (2004)

  12. Levy A., Ben-Dor G., Skews B.W. and Sorek S. (1993). Head-on collision of normal shock waves with rigid porous materials. Exp. Fluids 15: 183–190

    Article  Google Scholar 

  13. Levy A., Ben-Dor G. and Sorek S. (1998). Numerical investigation of the propagation of shock waves in rigid porous materials: flow field behavior and parametric study. Shock Waves 8: 127–137

    Article  MATH  ADS  Google Scholar 

  14. Li H., Levy A. and Ben-Dor G. (1995). Head-on interaction of planar shock waves with ideal rigid open-cell porous materials. Anal. model. Fluid Dynam. Res. 16: 203–215

    Article  Google Scholar 

  15. Naiman, H., Knight, D.: The effect of reynolds number on shock interaction with a rigid, porous barrier. In: AIAA 44th Aerospace Sciences Meeting, Reno, Nevada. AIAA Paper 2006-1301 (2006)

  16. Ofengeim D.Kh. and Drikakis D. (1997). Simulation of blast wave propagation over a cylinder. Shock Waves 7: 305–317

    Article  MATH  ADS  Google Scholar 

  17. Olim M., Kitamura T., Takayama K. and Dongen E.H. (1994). Numerical simulation of the propagation of shock waves in compressible open-cell porous foams. Int. J. Multiphase Flow 20: 557–568

    Article  MATH  Google Scholar 

  18. Phillips Y.Y., Mundie T.G., Yelverton J.T. and Richmond D.R. (1988). Cloth ballistic vest alters response to blast. J. Trauma 28: S149–S152

    Google Scholar 

  19. Rayevsky D.K., Gvozdeva L.G., Faresov Y., Brossard J. and Bailly P. (1990). Reflection of shock waves from surfaces covered with layers of polyurethane foam. Progr Astronaut Aeronaut 134: 171–182

    Google Scholar 

  20. Saito T., Marumoto M., Yamashita H., Hosseini S.H.R., Nakagawa A., Hirano T. and Takayama K. (2003). Experimental and numerical studies of underwater shock wave attenuation. Shock Waves 13: 139–148

    Article  ADS  Google Scholar 

  21. Sasoh A., Matsuoka K., Nakashio K., Timofeev E., Takayama K., Voinovich P., Saito T., Hirano S., Ono S. and Makino Y. (1998). Attenuation of weak shock waves along pseudo-perforated walls. Shock Waves 8: 149–159

    Article  ADS  Google Scholar 

  22. Skews B.W., Atkins M.D. and Seitz M.W. (1993). The impact of a shock wave on porous compressible foams. J. Fluid Mech. 253: 245–265

    Article  ADS  Google Scholar 

  23. Skews B.W. and Takayama K. (1996). Flow through a perforated surface due to shock-wave impact. J. Fluid Mech. 314: 27–52

    Article  ADS  Google Scholar 

  24. Skews, B.W., Bugarin, S.: Shock induced porous barrier flows, with underlying wall pressure amplification. In: Proceedings of 24th International Symposium on Shock Waves, Beijing, China, pp. 49–56 (2004)

  25. Yang Y.J., Liu Y. and Lomax H. (1987). Computation of shock wave reflection by circular cylinders. AIAA J. 25: 683–689

    Article  ADS  Google Scholar 

  26. Young A.J., Jaeger J.J., Phillips Y.Y., Yelverton J.T. and Richmond D.R. (1985). The influence of clothing on human intrathoracic pressure during airblast. Aviat. Space Environ. Med. 56: 49–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadassah Naiman.

Additional information

Communicated by O. Igra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naiman, H., Knight, D.D. The effect of porosity on shock interaction with a rigid, porous barrier. Shock Waves 16, 321–337 (2007). https://doi.org/10.1007/s00193-007-0077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-007-0077-y

Keywords

PACS

Navigation