Skip to main content

Advertisement

Log in

Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modelling of a large variety of astrophysical fluid flows in more than one dimension. Simulations of thermonuclear explosions in stars require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of nuclear kinetic equations to follow the composition changes of the gas during the explosion. The implementation of a realistic stellar equation of state, and the coupling of hydrodynamics and nuclear burning are investigated in the framework of the simple shock tube geometry. We present and discuss the results of a series of SPH simulations of a detonation in the presence of (1) a single exothermic nuclear reaction, and (2) a restricted network of nuclear reactions. Our results are compared to those of identical simulations performed by other authors using a different hydrodynamic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnett W.D. (1969). A possible model of supernovae: detonation of 12C. Astrophys Space Sci. 5: 180–212

    Article  ADS  Google Scholar 

  2. Arnett W.D. (1996). Supernovae and Nucleosynthesis. Princeton University Press, Princeton

    Google Scholar 

  3. Bazán G. and Arnett W.D. (1998). Two-dimensional hydrodynamics of pre-core collapse: oxygen shell burning.. Astrophys. J. 496: 316–332

    Article  ADS  Google Scholar 

  4. Benz, W.: Smooth particle hydrodynamics: a review. In: Buchler, J.R. (ed.), The Numerical Modelling of Nonlinear Pulsations: Problems and Prospects, p. 269. Kluwer, Dordrecht (1990)

  5. Benz W. (1997). Three-dimensional simulations of core ignition in sub-Chandrasekhar mass models. In: Ruiz-Lapuente, P., Canal, R. and Isern, J. (eds) Thermonuclear Supernovae, pp 457–474. Kluwer, Dordrecht

    Google Scholar 

  6. Boffin H.M.J. and Anzer U. (1994). Numerical studies of wind accretion using SPH. Astron. Astrophys. 284: 1026–1036

    ADS  Google Scholar 

  7. Boisseau J.R., Wheeler J.C., Oran E.S. and Khokhlov A. (1996). The multidimensional structure of detonations in Type Ia supernovae. Astrophys. J. Lett. 471: L99–L102

    Article  ADS  Google Scholar 

  8. Clayton D.D. (1983). Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press, Chicago

    Google Scholar 

  9. Colella P. and Woodward P.R. (1984). The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54: 174–201

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Courant R. and Friedrichs K.O. (1948). Supersonic Flow and Shock Waves. Interscience Publishers, New York

    MATH  Google Scholar 

  11. Cox J.P. and Giuli R.T. (1984). Principles of stellar structure. Gordon and Breach, New York

    Google Scholar 

  12. Fickett W. and Davis W.C. (1979). Detonation. University of California Press, Berkeley

    Google Scholar 

  13. Fowler W.A., Caughlan G.R. and Zimmermann B.A. (1975). Thermonuclear reaction rates II.. Annu Rev. Astron. Astrophys. 13: 69–112

    Article  ADS  Google Scholar 

  14. Fryxell B., Olson K., Ricker P., Timmes F.X., Zingale M., Lamb D.Q., MacNeice P., Rosner R., Truran J.W. and Tufo H. (2000). FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131: 273–334

    Article  ADS  Google Scholar 

  15. Fryxell, B.A., Müller, E., Arnett, W.D.: Hydrodynamics and nuclear burning. Technical report MPA 449, Max-Planck Institut für Physik und Astrophysik (1989, unpublished)

  16. Garcia-Senz D. and Bravo E. (1999). Sub-Chandrasekhar mass models for Type Ia supernovae: single and multipoint ignition. In: Miyama, S.M., Tomisaka, K. and Hanawa, T. (eds) Numerical Astrophysics., pp 281–282. Kluwer, Boston

    Google Scholar 

  17. Gehrz R.D., Truran J.W., Williams R.E. and Starrfield S. (1998). Nucleosynthesis in classical novae and its contribution to the interstellar medium. Publ Astron. Soc. Pac. 110: 3–26

    Article  ADS  Google Scholar 

  18. Gingold R.A. and Monaghan J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181: 375–389

    MATH  ADS  Google Scholar 

  19. Herant M. and Benz W. (1992). Postexplosion hydrodynamics of SN 1987A. Astrophys. J. 387: 294–308

    Article  ADS  Google Scholar 

  20. Hernquist L. and Katz N. (1989). TREESPH—a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70: 419–446

    Article  ADS  Google Scholar 

  21. Hillebrandt, W.: Supernova explosions. In: Miyama, S.M., Tomisaka, K., Hanawa, T. (eds.), Numerical Astrophysics, pp. 265–272. Kluwer, Boston

  22. Hoffman R., Rauscher T., Heger A. and Woosley S. (2002). New results on nucleosynthesis in massive stars; nuclear data needs for nucleosynthesis.. J. Nucl. Sci. Techn. Suppl. 2: 512–517

    Google Scholar 

  23. Höflich P. and Stein J. (2002). On the thermonuclear runaway in type Ia supernovae: How to run away?. Astrophys. J. 568: 779–790

    Article  ADS  Google Scholar 

  24. Katz N. (1992). Dissipational galaxy formation. II. Effects of stellar formation. Astron. J. 391: 502–517

    ADS  Google Scholar 

  25. Katz N., Weinberg D.H. and Hernquist L. (1996). Cosmological simulations with TreeSPH. Astrophys. J. Suppl. Ser. 105: 19–35

    Article  ADS  Google Scholar 

  26. Kerček A., Hillebrandt W. and Truran J.W. (1999). Three-dimensional simulations of classical novae. Astron. Astrophys. 345: 831–840

    ADS  Google Scholar 

  27. Landau L.D. and Lifshitz E.M. (1959). Fluid Mechanics. Pergamon Press, Oxford

    Google Scholar 

  28. Liu G.R. and Liu M.B. (2003). Smoothed Particle Hydrodynamics: a Meshfree Particle Method. World Scientific, Singapore

    MATH  Google Scholar 

  29. Liu M.B., Liu G.R. and Lam K.Y. (2002). Investigations into water mitigation using a meshless particle method. Shock Waves 12: 181–195

    Article  ADS  Google Scholar 

  30. Liu M.B., Liu G.R., Lam K.Y. and Zong Z. (2003). Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations. Shock Waves 12: 509–520

    Article  ADS  Google Scholar 

  31. Lucy L.B. (1977). A numerical approach to the testing of the fission hypothesis. Astron. J. 82: 1013–1024

    Article  ADS  Google Scholar 

  32. Monaghan J.J. (1989). On the problem of penetration in particle methods. J. Comput. Phys. 82: 1–15

    Article  MATH  ADS  Google Scholar 

  33. Monaghan J.J. (1992). Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30: 543–574

    Article  ADS  Google Scholar 

  34. Monaghan J.J. and Gingold R.A. (1983). Shock simulation by the particle method SPH. J. Comput. Phys. 52: 374–389

    Article  MATH  Google Scholar 

  35. Monaghan J.J. and Lattanzio J.C. (1985). A refined particle method for astrophysical problems. Astron. Astrophys. 149: 135–143

    MATH  ADS  Google Scholar 

  36. Monaghan J.J. and Lattanzio J.C. (1991). A simulation of the collapse and fragmentation of cooling molecular clouds. Astrophys. J. 375: 177–189

    Article  ADS  Google Scholar 

  37. Morris J.P. and Monaghan J.J. (1997). A switch to reduce SPH viscosity. J. Comput. Phys. 136: 41–50

    Article  MATH  MathSciNet  Google Scholar 

  38. Müller E. (1986). Nuclear reaction networks and stellar evolution codes: the coupling of composition changes and energyrelease in explosive nuclear burning. Astron. Astrophys. 162: 103–108

    MATH  Google Scholar 

  39. Randles P.W. and Libersky L.D. (1996). Smoothed Particle Hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng 139: 375–408

    Article  MATH  MathSciNet  Google Scholar 

  40. Rasio F.A. and Shapiro S.L. (1991). Collisions of giant with compact objects: hydrodynamical calculations. Astrophys. J. 377: 559–580

    Article  ADS  Google Scholar 

  41. Reinecke M., Hillebrandt W. and Niemeyer J.C. (2002). Three-dimensional simulations of Type Ia supernovae. Astron. Astrophys. 391: 1167–1172

    Article  ADS  Google Scholar 

  42. Segretain L., Chabrier G. and Mochkovitch R. (1997). The fate of merging white dwarfs. Astrophys. J. 481: 355–362

    Article  ADS  Google Scholar 

  43. Sod G.A. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27: 1–31

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Thacker R.J., Tittley E.R., Pearce F.R., Couchman H.M.P. and Thomas P.A. (2000). Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations. Mon. Not. R. Astron. Soc. 319: 619–648

    Article  ADS  Google Scholar 

  45. Thielemann F.-K., Nomoto K. and Yokoi K. (1986). Explosive nucleosynthesis in carbon deflagration models of Type I supernovae. Astron. Astrophys. 158: 17–33

    ADS  Google Scholar 

  46. Timmes F.X. (1999). Integration of nuclear reaction networks for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 124: 241–263

    Article  ADS  Google Scholar 

  47. Whitworth A.P., Bhattal A.S., Turner J.A. and Watkins S.J. (1995). Estimating density in Smoothed Particle Hydrodynamics. Astron. Astrophys. 301: 929–932

    ADS  Google Scholar 

  48. Yukawa H., Boffin H.M.J. and Matsuda T. (1997). Spiral shocks in three-dimensional accretion discs. Mon. Not. R. Astron. Soc. 292: 321–330

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

communicated by A.K. Hayashi.

Supported partly by a grant of the Belgian State (Federal Office for Scientific, Technical and Cultural Affairs) in the framework of the project IUAP P5/36, partly by a grant of the Université Libre de Bruxelles (in the framework of the Pôle d’Attraction Interuniversitaire PAI 4/18), and by the Programme International de Coopération Scientifique PICS No 319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busegnies, Y., François, J. & Paulus, G. Unidimensional SPH simulations of reactive shock tubes in an astrophysical perspective. Shock Waves 16, 359–389 (2007). https://doi.org/10.1007/s00193-007-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-007-0072-3

Keywords

PACS

Navigation