Skip to main content
Log in

Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Vaginal tactile imaging (VTI) is based on principles similar to those of manual palpation. The objective of this study is to assess the clinical suitability of new approach for imaging and tissue elasticity quantification under normal and prolapse conditions.

Methods

The study subjects included 31 women with normal and prolapse conditions. The tissue elasticity (Young’s modulus) was calculated from spatial gradients in the resulting 3-D tactile images.

Results

Average values for tissue elasticity for the anterior and posterior compartments for normal conditions were 7.4 ± 4.3 kPa and 6.2 ± 3.1 kPa respectively. For Stage III prolapse the average values for tissue elasticity for anterior and posterior compartments were 1.8 ± 0.7 kPa and 1.8 ± 0.5 kPa respectively.

Conclusions

VTI may serve as a means for 3-D imaging of the vagina and a quantitative assessment of vaginal tissue elasticity, providing important information for furthering our understanding of pelvic organ prolapse and surgical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

E :

Young’s modulus

POP:

Pelvic organ prolapse

POP-Q:

Pelvic organ prolapse quantification system

MRI:

Magnetic resonance imaging

VTI:

Vaginal tactile imager

References

  1. Swift SE (2000) The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 183:277–285

    Article  PubMed  CAS  Google Scholar 

  2. Jelovsek JE, Maher C, Barber MD (2007) Pelvic organ prolapse. Lancet 369:1027–1038

    Article  PubMed  Google Scholar 

  3. Abramowitch SD, Feola A, Jallah Z, Moalli PA (2009) Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 144:S146–S158

    Article  PubMed  Google Scholar 

  4. Jean-Charles C, Rubod C, Brieu M, Boukerrou M, Fasel J, Cosson M (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int Urogynecol J 21:1535–1538

    Article  PubMed  Google Scholar 

  5. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  PubMed  CAS  Google Scholar 

  6. Manduca A, Oliphant TE, Dresner MA et al (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5:237–254

    Article  PubMed  CAS  Google Scholar 

  7. Sarvazyan AP, Rudenko OV, Swanson SD, Fowlkes JB, Emelianov SY (1998) Shear wave elasticity imaging-a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24:1419–1435

    Article  PubMed  CAS  Google Scholar 

  8. Elgeti T, Beling M, Hamm B, Braun J, Sack I (2010) Elasticity-based determination of isovolumetric phases in the human heart. J Cardiovasc Magn Reson 12:1–8

    Article  Google Scholar 

  9. Weiss RE, Egorov V, Ayrapetyan S, Sarvazyan N, Sarvazyan AP (2008) Prostate mechanical imaging: a new method for prostate assessment. Urology 71:425–429

    Article  PubMed  Google Scholar 

  10. Egorov V, Sarvazyan AP (2008) Mechanical imaging of the breast. IEEE Trans Med Imaging 27:1275–1287

    Article  PubMed  Google Scholar 

  11. Wellman PS (1999) Tactile Imaging. Ph.D. Thesis presented to Harvard University Division of Engineering and Applied Sciences

  12. Sarvazyan AP (1998) Mechanical imaging: a new technology for medical diagnostics. Int J Med Inf 49:195–216

    Article  CAS  Google Scholar 

  13. Egorov V, van Raalte H, Sarvazyan AP (2010) Vaginal tactile imager. IEEE Trans Biomed Eng 57:1736–1744

    Article  PubMed  Google Scholar 

  14. Bump RC, Mattiasson A, Bo K et al (1996) The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol 175:10–17

    Article  PubMed  CAS  Google Scholar 

  15. Friedman RM, Hester KD, Green BG, LaMotte RH (2008) Magnitude estimation of softness. Exp Brain Res 191:133–142

    Article  PubMed  Google Scholar 

  16. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16

    Article  Google Scholar 

  17. Lei L, Song Y, Chen R (2007) Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. Int Urogynecol J 18:603–607

    Article  Google Scholar 

  18. Prantil RL, Jankowski RJ, Kaiho Y et al (2007) Ex vivo biomechanical properties of the female urethra in a rat model of birth trauma. Am J Physiol Renal Physiol 292:1229–1237

    Article  Google Scholar 

  19. Bo K, Finckenhagen HB (2001) Vaginal palpation of pelvic floor muscle strength: inter-test reproducibility and comparison between palpation and vaginal squeeze pressure. Acta Obstet Gynecol Scand 80:883–887

    PubMed  CAS  Google Scholar 

  20. Tunn R, Petri E (2003) Introital and transvaginal ultrasound as the main tool in the assessment of urogenital and pelvic floor dysfunction: an imaging panel and practical approach. Ultrasound Obstet Gynecol 22(2):205–213

    Article  PubMed  CAS  Google Scholar 

  21. Constantinou CE (2009) Dynamics of female pelvic floor function using urodynamics, ultrasound and magnetic resonance imaging (MRI). Eur J Obstet Gynecol Reprod Biol 144(Suppl 1):S159–S165

    Article  PubMed  Google Scholar 

  22. Santoro GA, Wieczorek AP, Dietz HP et al (2011) State of the art: an integrated approach to pelvic floor ultrasonography. Ultrasound Obstet Gynecol 37(4):381–396

    Article  PubMed  CAS  Google Scholar 

  23. Egorov V, Tsyuryupa S, Kanilo S, Kogit M, Sarvazyan A (2008) Soft tissue elastometer. Med Eng Phys 30(2):206–212

    Article  PubMed  CAS  Google Scholar 

  24. Krouskop TA, Wheeler TM, Kaller F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20(4):260–274

    PubMed  CAS  Google Scholar 

  25. Rubod C, Boukerrou M, Brieu M et al (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J 19(811–816):2008

    Google Scholar 

  26. Martins PALS, Peña E, Calvo B, Doblaré M, Mascarenhas T, Natal Jorge RM, Ferreira AJM (2010) Prediction of nonlinear elastic behavior of vaginal tissue: experimental results and model formulation. Comp Methods Biomech Biomed Eng 13:327–337

    Article  CAS  Google Scholar 

  27. Aglyamov SR, Egorov V, Emelianov SY et al (2008) A nonlinear model for mechanical imaging. Proceedings of the 7th International Conference on the ultrasonic measurement and imaging of tissue elasticity, Austin, Texas, Oct 27–30: 89

  28. da Silva-Filho AL, Martins PA, Parente MP et al (2010) Translation of biomechanics research to urogynecology. Arch Gynecol Obstet 282:149–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Noune Sarvazyan, PhD, and Armen Sarvazyan, PhD, DSc, for editing assistant and support of this research; Randee Weed, MS, RDMS, for clinical research documentation and data management; Robin Haff, RN, BSN, for study coordination; and Milind Patel for technical assistance with the device. The work was supported by the National Institute on Aging, USA, grant AG034714.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Egorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, V., van Raalte, H. & Lucente, V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J 23, 459–466 (2012). https://doi.org/10.1007/s00192-011-1592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-011-1592-z

Keywords

Navigation