Skip to main content

Advertisement

Log in

Tissue engineering a clinically useful extracellular matrix biomaterial

  • 2005 IUGA GRAFTS ROUNDTABLE
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Implantable biomaterials are one of the most useful tools in the surgeon’s armamentarium, yet there is much room for improvement. Chronic pain, tissue erosion, and late infections are just a few of the serious complications that can occur with conventional, inert materials. In contrast, tissue-inductive materials exist today. Combinations of biologically important molecules for directing cell growth and providing structural stability can be found in naturally occuring extracellular matrices. These “soft-tissue skeletons” of Mother Nature can be harvested, processed, and provided in a medically safe and biologically active form for repairing many different tissues in the human body. The future of surgical practice may well be determined by how well these new implant materials recreate the tissues they replace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lanza S, Langer R, Vacanti J (eds) (2000) Principles of tissue engineering, 2nd edn. Academic, San Diego, pp xxxv–xxxvi

    Google Scholar 

  2. Kim S, Chung EH, Gilbert M, Healy KE (2005) Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 75(1):73–88

    PubMed  Google Scholar 

  3. Venugopal J, Ramakrishna S (2005) Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 11(5–6):847–854

    Article  PubMed  CAS  Google Scholar 

  4. Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ et al (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208

    Article  PubMed  CAS  Google Scholar 

  5. Wang JS, Tung KC, Huang CC, Lai CH (2005) Alteration of extracellular collagen matrix in the myocardium of canines infected with Dirofilaria immitis. Vet Parasitol 131(3–4):261–265

    Article  PubMed  CAS  Google Scholar 

  6. Badylak SF (1993) Small intestinal submucosa (SIS): a biomaterial conducive to smart tissue remodeling. In: Bell E (ed) Tissue engineering: current perspectives. Burkhauser, Cambridge, pp 179–189

    Google Scholar 

  7. Hodde JP, Ernst DM, Hiles MC (2005) An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix. J Wound Care 14(1):23–25

    PubMed  CAS  Google Scholar 

  8. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    Article  PubMed  CAS  Google Scholar 

  9. McPherson TB, Badylak SF (1998) Characterization of fibronectin derived from porcine small intestinal submucosa. Tissue Eng 4:75–83

    Article  CAS  Google Scholar 

  10. Puolakkainen PA, Ranchalis JE, Strong DM, Twardzik DR (1993) The effect of sterilization on transforming growth factor beta isolated from demineralized human bone. Transfusion 33(8):679–685

    Article  PubMed  CAS  Google Scholar 

  11. Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15(8):593–600

    Article  PubMed  CAS  Google Scholar 

  12. Hodde J, Hiles M (2002) Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol Bioeng 79(2):211–216

    Article  PubMed  CAS  Google Scholar 

  13. Doillon CJ, Silver FH (1986) Collagen-based wound dressing: effects of hyaluronic acid and fibronectin on wound healing. Biomaterials 7(1):3–8

    Article  PubMed  CAS  Google Scholar 

  14. Klinge U, Klosterhalfen B, Muller M, Schumpelick V (1999) Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg 165(7):665–673

    Article  PubMed  CAS  Google Scholar 

  15. Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D et al (2001) In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659

    Article  PubMed  CAS  Google Scholar 

  16. Hiles MC, Badylak SF, Lantz GC, Kokini K, Geddes LA, Morff RJ (1995) Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res 29(7):883–891

    Article  PubMed  CAS  Google Scholar 

  17. Wiedemann A, Otto M (2004) Small intestinal submucosa for pubourethral sling suspension for the treatment of stress incontinence: first histopathological results in humans. J Urol 172(1):215–218

    Article  PubMed  Google Scholar 

  18. Ansaloni L, Catena F, D’Alessandro L (2003) Prospective randomized, double-blind, controlled trial comparing Lichtenstein’s repair of inguinal hernia with polypropylene mesh versus Surgisis gold soft tissue graft: preliminary results. Acta Biomed Ateneo Parmense 74(Suppl 2):10–14

    Google Scholar 

  19. Franklin ME Jr, Gonzalez JJ Jr, Glass JL (2004) Use of porcine small intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields: 2-year follow-up. Hernia 8(3):186–189

    Article  PubMed  Google Scholar 

  20. Rutner AB, Levine SR, Schmaelzle JF (2003) Processed porcine small intestine submucosa as a graft material for pubovaginal slings: durability and results. Urology 62(5):805–809

    Article  PubMed  Google Scholar 

  21. Zhang F, Zhu C, Oswald T, Lei MP, Lineaweaver WC (2003) Porcine small intestinal submucosa as a carrier for skin flap prefabrication. Ann Plast Surg 51(5):488–492

    Article  PubMed  Google Scholar 

  22. Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW (1998) Small intestinal submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng 4(4):379–387

    Article  PubMed  CAS  Google Scholar 

  23. De Ugarte DA, Choi E, Weitzbuch H, Wulur I, Caulkins C, Wu B et al (2004) Mucosal regeneration of a duodenal defect using small intestine submucosa. Am Surg 70(1):49–51

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hiles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiles, M., Hodde, J. Tissue engineering a clinically useful extracellular matrix biomaterial. Int Urogynecol J 17 (Suppl 1), 39–43 (2006). https://doi.org/10.1007/s00192-006-0104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-006-0104-z

Keywords

Navigation